Seven transmembrane-spanning receptors (7TMRs or G protein-coupled receptors, GPCRs) represent the largest family of signal-transducing molecules known. 7TMRs convey signals for light and many extracellular regulatory molecules, such as, hormones, growth factors and neurotransmitters, that regulate every cell in the body. Dysregulation of 7TMRs has been found in a growing number of human diseases and 7TMRs have been estimated to be the targets of more than 30% of the drugs used in clinical medicine today. Thus, understanding how 7TMRs function is an important goal of biological research. We have used receptors for thyrotropin-releasing hormone (TRH) (TRH-Rs), for thyroid-stimulating hormone (TSH-R) and for free fatty acids (GPR40/FFAR1) as model 7TMRs to study their structure and function. During this year, we have studied several new aspects of the structure and function of these receptors. 1) We used newly constructed homology models of TRH-R type 1 (TRH-R1) and TRH-R type 2 (TRH-R2) to further define the structural and functional differences between these two receptors. 2) Using a TRH-R1 homology model, we developed a novel computational approach to discover ligands for this receptor. This approach incorporated the idea that the binding pocket for an unnatural ligand may be different from the pocket for the native ligand. 3) Using homology models, we predicted residues within FFAR1 that are important for agonist recognition and receptor activation, and then showed that these predictions were correct using site-specific mutagenesis. 4) We used our homology model of FFAR1 to perform virtual screening of potential low molecular weight ligands for FFAR1 and discovered novel agonists and antagonists. Based on our research into FFAR1, we were invited to contribute a review article on FFARs.

Project Start
Project End
Budget Start
Budget End
Support Year
7
Fiscal Year
2008
Total Cost
$603,446
Indirect Cost
City
State
Country
United States
Zip Code
Marcus-Samuels, Bernice; Krieger, Christine C; Boutin, Alisa et al. (2018) Evidence That Graves' Ophthalmopathy Immunoglobulins Do Not Directly Activate IGF-1 Receptors. Thyroid 28:650-655
Diana, Tanja; Daiber, Andreas; Oelze, Matthias et al. (2018) Stimulatory TSH-Receptor Antibodies and Oxidative Stress in Graves Disease. J Clin Endocrinol Metab 103:3668-3677
Neumann, Susanne; Eliseeva, Elena; Boutin, Alisa et al. (2018) Discovery of a Positive Allosteric Modulator of the Thyrotropin Receptor: Potentiation of Thyrotropin-Mediated Preosteoblast Differentiation In Vitro. J Pharmacol Exp Ther 364:38-45
Krieger, Christine C; Perry, Joseph D; Morgan, Sarah J et al. (2017) TSH/IGF-1 Receptor Cross-Talk Rapidly Activates Extracellular Signal-Regulated Kinases in Multiple Cell Types. Endocrinology 158:3676-3683
Place, Robert F; Krieger, Christine C; Neumann, Susanne et al. (2017) Inhibiting thyrotropin/insulin-like growth factor 1 receptor crosstalk to treat Graves' ophthalmopathy: studies in orbital fibroblasts in vitro. Br J Pharmacol 174:328-340
Dougherty, John P; Wolff, Brian S; Cullen, Mary J et al. (2017) Taltirelin alleviates fatigue-like behavior in mouse models of cancer-related fatigue. Pharmacol Res 124:1-8
Dougherty, John P; Springer, Danielle A; Gershengorn, Marvin C (2016) The Treadmill Fatigue Test: A Simple, High-throughput Assay of Fatigue-like Behavior for the Mouse. J Vis Exp :
Krieger, Christine C; Place, Robert F; Bevilacqua, Carmine et al. (2016) TSH/IGF-1 Receptor Cross Talk in Graves' Ophthalmopathy Pathogenesis. J Clin Endocrinol Metab 101:2340-7
Morgan, Sarah J; Neumann, Susanne; Marcus-Samuels, Bernice et al. (2016) Thyrotropin and Insulin-Like Growth Factor 1 Receptor Crosstalk Upregulates Sodium-Iodide Symporter Expression in Primary Cultures of Human Thyrocytes. Thyroid 26:1794-1803
Boutin, Alisa; Neumann, Susanne; Gershengorn, Marvin C (2016) Multiple Transduction Pathways Mediate Thyrotropin Receptor Signaling in Preosteoblast-Like Cells. Endocrinology 157:2173-81

Showing the most recent 10 out of 45 publications