Age and excessive energy intake/obesity are risk factors for cerebrovascular disease, but it is not known if and how these factors affect the extent of brain damage and outcome in ischemic stroke. We therefore determined the interactions of age and energy intake on the outcome of ischemic brain injury, and elucidated the underlying mechanisms. We utilized a novel microchip-based immunoaffinity capillary electrophoresis technology to measure a panel of neurotrophic factors, cytokines and cellular stress resistance proteins in brain tissue samples from young, middle age and old mice that had been maintained on control or energy restricted diets prior to middle cerebral artery occlusion and reperfusion (I/R). Mortality from focal ischemic stroke was increased with advancing age and reduced by an intermittent fasting (IF) diet. Brain damage and functional impairment were reduced by IF in young and middle age mice, but not in old mice. The basal and post-stroke levels of neurotrophic factors (BDNF and bFGF), protein chaperones (HSP70 and GRP78) and the antioxidant enzyme HO-1 were decreased, while levels of inflammatory cytokines were increased in the cerebral cortex and striatum of old mice compared to younger mice. IF coordinately increased levels of protective proteins and decreases inflammatory cytokines in young, but not in old mice. Reduction in dietary energy intake differentially modulates neurotrophic and inflammatory pathways to protect neurons against ischemic injury, and these beneficial effects of IF are compromised during aging resulting in increased brain damage and poorer functional outcome. In another study we developed a bioassay to screen a panel of botanical insecticides to identify those that activate adaptive stress responses in neurons at subtoxic doses. Many phytochemicals function as noxious agents that protect plants against insects and other damaging organisms. However, at subtoxic doses the same phytochemicals may activate adaptive cellular stress response pathways that can protect cells against a variety of adverse conditions. We screened a panel of botanical pesticides using cultured human and rodent neural cell models, and identified plumbagin as a potent activator of the nuclear factor E2-related factor 2 (Nrf2)/ antioxidant response element (ARE) pathway. Subtoxic concentrations of plumbagin increase nuclear localization and transcriptional activity of Nrf2 and induce the expression of the Nrf2/ARE-dependent gene heme oxygenase 1 (HO-1) in human neuroblastoma cells. Plumbagin specifically activates the Nrf2/ARE pathway in primary cortical neurons from ARE-human placental alkaline phosphatase (hPAP) reporter mice. The activation of the ARE and the induction of HO-1 are abolished by RNA interference-mediated knockdown of Nrf2 expression. Exposure of neuroblastoma cells and primary cortical neurons to plumbagin provides protection against subsequent oxidative and metabolic insults. The induction of HO-1 and the neuroprotective effects of plumbagin involve the PI3K/Akt signaling pathway upstream of Nrf2 activation. Intravenous administration of plumbagin significantly reduces the amount of brain damage and ameliorates associated neurological deficits in a mouse model of focal ischemic stroke. Our findings establish precedence for the identification and characterization of neuroprotective phytochemicals based upon their ability to activate adaptive cellular stress response pathways. Glutamate, the major excitatory neurotransmitter in the brain, activates receptors coupled to membrane depolarization and Ca(2+) influx that mediates functional responses of neurons including processes such as learning and memory. Here we show that reversible nuclear oxidative DNA damage occurs in cerebral cortical neurons in response to transient glutamate receptor activation using non-toxic physiological levels of glutamate. This DNA damage was prevented by intracellular Ca(2+) chelation, the mitochondrial superoxide dismutase mimetic MnTMPyP (Mn-5,10,15,20-tetra(4-pyridyl)-21H,23H-porphine chloride tetrakis(methochloride)), and blockade of the permeability transition pore. The repair of glutamate-induced DNA damage was associated with increased DNA repair activity and increased mRNA and protein levels of apurinic endonuclease 1 (APE1). APE1 knockdown induced accumulation of oxidative DNA damage after glutamate treatment, suggesting that APE1 is a key repair protein for glutamate-induced DNA damage. A cAMP-response element-binding protein (CREB) binding sequence is present in the Ape1 gene (encodes APE1 protein) promoter and treatment of neurons with a Ca(2+)/calmodulin-dependent kinase inhibitor (KN-93) blocked the ability of glutamate to induce CREB phosphorylation and APE1 expression. Selective depletion of CREB using RNA interference prevented glutamate-induced up-regulation of APE1. Thus, glutamate receptor stimulation triggers Ca(2+)- and mitochondrial reactive oxygen species-mediated DNA damage that is then rapidly repaired by a mechanism involving Ca(2+)-induced, CREB-mediated APE1 expression. Our findings reveal a previously unknown ability of neurons to efficiently repair oxidative DNA lesions after transient activation of glutamate receptors. Membrane-associated oxidative stress has been implicated in the synaptic dysfunction and neuronal degeneration that occurs in AD, but the underlying mechanisms are unknown. Enzymes of the plasma membrane redox system (PMRS) provide electrons for energy metabolism and recycling of antioxidants. Here, we show that activities of several PMRS enzymes are selectively decreased in plasma membranes from the hippocampus and cerebral cortex of 3xTgAD mice, an animal model of AD. Our results that indicate the decreased PMRS enzyme activities are associated with decreased levels of coenzyme Q(10) and increased levels of oxidative stress markers. Neurons overexpressing the PMRS enzymes (NQO1 or cytochrome b5 reductase) exhibit increased resistance to amyloid β-peptide (Aβ). If and to what extent Aβis the cause of the impaired PMRS enzymes in the 3xTgAD mice is unknown. Because these mice also express mutant tau and presenilin-1, it is possible that one or more of the PMRS could be adversely affected by these mutations. The impairment of the PMRS in an animal model of AD, and the ability of PMRS enzyme activities to protect neurons against Aβ-toxicity, suggest enhancement PMRS function as a novel approach for protecting neurons against oxidative damage in AD and related disorders. Huntington's disease (HD) is an inherited neurodegenerative disorder caused by expanded polyglutamine repeats in the huntingtin (Htt) protein. Because electroconvulsive shock (ECS) can stimulate the production of brain-derived neurotrophic factor (BDNF) and protect neurons against stress, we determined whether ECS treatment would modify the disease process and provide a therapeutic benefit in a mouse model of HD. ECS (50 mA for 0.2 s) or sham treatment was administered once weekly to male N171-82Q Htt mutant mice beginning at 2 months of age. Endpoints measured included motor function, striatal and cortical pathology, and levels of protein chaperones and BDNF. ECS treatment delayed the onset of motor symptoms and body weight loss and extended the survival of HD mice. Striatal neurodegeneration was attenuated and levels of protein chaperones (Hsp70 and Hsp40) and BDNF were elevated in striatal neurons of ECS-treated compared with sham-treated HD mice. Our findings demonstrate that ECS can increase the resistance of neurons to mutant Htt resulting in improved functional outcome and extended survival. The potential of ECS as an intervention in subjects that inherit the mutant Htt gene merits further consideration.
Showing the most recent 10 out of 78 publications