In one study we investigated the effects of age and dietary energy intake on the response of brain cells to ischemic injury in a mouse model of stroke. Age and excessive energy intake/obesity are risk factors for cerebrovascular disease, but it is not known if and how these factors affect the extent of brain damage and outcome in ischemic stroke. We therefore determined the interactions of age and energy intake on the outcome of ischemic brain injury, and elucidated the underlying mechanisms. We utilized a novel microchip-based immunoaffinity capillary electrophoresis technology to measure a panel of neurotrophic factors, cytokines and cellular stress resistance proteins in brain tissue samples from young, middle age and old mice that had been maintained on control or energy restricted diets prior to middle cerebral artery occlusion and reperfusion (I/R). Results. Mortality from focal ischemic stroke was increased with advancing age and reduced by an intermittent fasting (IF) diet. Brain damage and functional impairment were reduced by IF in young and middle age mice, but not in old mice. The basal and post-stroke levels of neurotrophic factors (BDNF and bFGF), protein chaperones (HSP70 and GRP78) and the antioxidant enzyme HO-1 were decreased, while levels of inflammatory cytokines were increased in the cerebral cortex and striatum of old mice compared to younger mice. IF coordinately increased levels of protective proteins and decreases inflammatory cytokines in young, but not in old mice. Reduction in dietary energy intake differentially modulates neurotrophic and inflammatory pathways to protect neurons against ischemic injury, and these beneficial effects of IF are compromised during aging resulting in increased brain damage and poorer functional outcome. In another study we developed a bioassay to screen a panel of botanical insecticides to identify those that activate adaptive stress responses in neurons at subtoxic doses. Many phytochemicals function as noxious agents that protect plants against insects and other damaging organisms. However, at subtoxic doses the same phytochemicals may activate adaptive cellular stress response pathways that can protect cells against a variety of adverse conditions. We screened a panel of botanical pesticides using cultured human and rodent neural cell models, and identified plumbagin as a potent activator of the nuclear factor E2-related factor 2 (Nrf2)/ antioxidant response element (ARE) pathway. Subtoxic concentrations of plumbagin increase nuclear localization and transcriptional activity of Nrf2 and induce the expression of the Nrf2/ARE-dependent gene heme oxygenase 1 (HO-1) in human neuroblastoma cells. Plumbagin specifically activates the Nrf2/ARE pathway in primary cortical neurons from ARE-human placental alkaline phosphatase (hPAP) reporter mice. The activation of the ARE and the induction of HO-1 are abolished by RNA interference-mediated knockdown of Nrf2 expression. Exposure of neuroblastoma cells and primary cortical neurons to plumbagin provides protection against subsequent oxidative and metabolic insults. The induction of HO-1 and the neuroprotective effects of plumbagin involve the PI3K/Akt signaling pathway upstream of Nrf2 activation. Intravenous administration of plumbagin significantly reduces the amount of brain damage and ameliorates associated neurological deficits in a mouse model of focal ischemic stroke. Our findings establish precedence for the identification and characterization of neuroprotective phytochemicals based upon their ability to activate adaptive cellular stress response pathways. Age and excessive energy intake/obesity are risk factors for cerebrovascular disease, but it is not known if and how these factors affect the extent of brain damage and outcome in ischemic stroke. We therefore determined the interactions of age and energy intake on the outcome of ischemic brain injury, and elucidated the underlying mechanisms.We utilized a novel microchip-based immunoaffinity capillary electrophoresis technology to measure a panel of neurotrophic factors, cytokines, and cellular stress resistance proteins in brain tissue samples from young, middle-aged, and old mice that had been maintained on control or energy-restricted diets prior to middle cerebral artery occlusion and reperfusion. Mortality from focal ischemic stroke was increased with advancing age and reduced by an intermittent fasting (IF) diet. Brain damage and functional impairment were reduced by IF in young and middle-aged mice, but not in old mice. The basal and poststroke levels of neurotrophic factors (brain-derived neurotrophic factor and basic fibroblast growth factor), protein chaperones (heat shock protein 70 and glucose regulated protein 78), and the antioxidant enzyme heme oxygenase-1 were decreased, whereas levels of inflammatory cytokines were increased in the cerebral cortex and striatum of old mice compared with younger mice. IF coordinately increased levels of protective proteins and decreased inflammatory cytokines in young, but not in old mice. We conclude that a reduction in dietary energy intake differentially modulates neurotrophic and inflammatory pathways to protect neurons against ischemic injury, and these beneficial effects of IF are compromised during aging, resulting in increased brain damage and poorer functional outcome. Glutamate, the major excitatory neurotransmitter in the brain, activates receptors coupled to membrane depolarization and Ca(2+) influx that mediates functional responses of neurons including processes such as learning and memory. Here we show that reversible nuclear oxidative DNA damage occurs in cerebral cortical neurons in response to transient glutamate receptor activation using non-toxic physiological levels of glutamate. This DNA damage was prevented by intracellular Ca(2+) chelation, the mitochondrial superoxide dismutase mimetic MnTMPyP (Mn-5,10,15,20-tetra(4-pyridyl)-21H,23H-porphine chloride tetrakis(methochloride)), and blockade of the permeability transition pore. The repair of glutamate-induced DNA damage was associated with increased DNA repair activity and increased mRNA and protein levels of apurinic endonuclease 1 (APE1). APE1 knockdown induced accumulation of oxidative DNA damage after glutamate treatment, suggesting that APE1 is a key repair protein for glutamate-induced DNA damage. A cAMP-response element-binding protein (CREB) binding sequence is present in the Ape1 gene (encodes APE1 protein) promoter and treatment of neurons with a Ca(2+)/calmodulin-dependent kinase inhibitor (KN-93) blocked the ability of glutamate to induce CREB phosphorylation and APE1 expression. Selective depletion of CREB using RNA interference prevented glutamate-induced up-regulation of APE1. Thus, glutamate receptor stimulation triggers Ca(2+)- and mitochondrial reactive oxygen species-mediated DNA damage that is then rapidly repaired by a mechanism involving Ca(2+)-induced, CREB-mediated APE1 expression. Our findings reveal a previously unknown ability of neurons to efficiently repair oxidative DNA lesions after transient activation of glutamate receptors.
Showing the most recent 10 out of 78 publications