Circadian rhythms in organs, tissues and cells, which are entrained to the 24-h day by cycles of light and nutrition, lose amplitude and phase stability with age. Humans exhibit an endogenous circadian rhythm in glucose tolerance and respond to meals with higher glucose levels at night. GWAS implicate circadian genes in the risk of T2D, and some key components of the circadian molecular clock (CMC) that regulate glucose metabolism. We have found that acute circadian misalignment in young adults leads to higher post-prandial glucose despite elevated insulin, whereas recurrent circadian disruption (RCD) combined with sleep restriction leads to higher post-prandial glucose and decreased insulin, even when the meal is consumed at an appropriate circadian phase. This may explain why night workers are at increased risk of conditions associated with metabolic aging: obesity, metabolic syndrome and diabetes. Since circadian dysregulation is common in older Americans, 3 million of whom work at night, it is critical for development of targeted therapies to understand the metabolic risks associated with RCD, even when sleep loss is minimized. Project 1 will evaluate the impact of RCD on glucose metabolism in older adults. Whereas chronic sleep loss and acute circadian misalignment induce insulin resistance, we hypothesize that RCD disrupts coordination among central and peripheral CMCs, thereby profoundly impairing pancreatic P-cell responsiveness and inducing insulin resistance. By comparing responses of older participants on a forced desynchrony (T=28h) protocol for a month with those on a 24-h day, we will test the hypotheses that in response to a standard test meal: 1) acute circadian misalignment will induce increase glucose levels, despite increased insulin levels;2) 3-week history of RCD (while minimizing sleep loss) will induce increased glucose levels accompanied by reduced insulin levels, even when the meal is consumed at a normal circadian phase;3) 3-week history of RCD (while minimizing sleep loss) will alter the waveform and amplitude of the circadian Cortisol rhythm;and that 4) re-imposing a 24-h light-dark/meal schedule for 1 week will re-entrain circadian rhythms, normalizing the Cortisol rhythm and the glucose and insulin responses to a standardized meal. This Project will contribute to understanding the distinct metabolic risks from circadian disruption, laying the groundwork for research designed to develop therapies targeted to reduce the risk of obesity, metabolic syndrome and diabetes, and enhance the health and quality of life of older Americans whose circadian rhythms are disrupted by age-related changes, irregular schedules, and/or night shift work.

Public Health Relevance

Circadian rhythms affect glucose metabolism and sleep. Recurrent circadian disruption coupled with sleep loss impairs glucose metabolism. Because sleep loss itself can impair metabolism, we aim to understand the distinct consequences of recurrent circadian disruption on glucose metabolism in older adults, even when sleep loss is minimized. This research may aid in development of therapies targeted at the increased age related risk of obesity and diabetes in older Americans, who often suffer from circadian rhythm disruption.

Agency
National Institute of Health (NIH)
Institute
National Institute on Aging (NIA)
Type
Research Program Projects (P01)
Project #
5P01AG009975-17
Application #
8707295
Study Section
Special Emphasis Panel (ZAG1)
Project Start
2014-07-01
Project End
2018-06-30
Budget Start
2014-07-01
Budget End
2015-06-30
Support Year
17
Fiscal Year
2014
Total Cost
Indirect Cost
Name
Brigham and Women's Hospital
Department
Type
DUNS #
City
Boston
State
MA
Country
United States
Zip Code
02115
Lin, Chen; Chang, Yi-Chung; Cheng, Ya-Chen et al. (2016) Probing the Fractal Pattern of Heartbeats in Drosophila Pupae by Visible Optical Recording System. Sci Rep 6:31950
Yeh, Chien-Hung; Lo, Men-Tzung; Hu, Kun (2016) Spurious cross-frequency amplitude-amplitude coupling in nonstationary, nonlinear signals. Physica A 454:143-150
Vetrivelan, Ramalingam; Kong, Dong; Ferrari, Loris L et al. (2016) Melanin-concentrating hormone neurons specifically promote rapid eye movement sleep in mice. Neuroscience 336:102-113
Markt, Sarah C; Flynn-Evans, Erin E; Valdimarsdottir, Unnur A et al. (2016) Sleep Duration and Disruption and Prostate Cancer Risk: a 23-Year Prospective Study. Cancer Epidemiol Biomarkers Prev 25:302-8
Morris, Christopher J; Purvis, Taylor E; Hu, Kun et al. (2016) Circadian misalignment increases cardiovascular disease risk factors in humans. Proc Natl Acad Sci U S A 113:E1402-11
Klerman, Elizabeth B; Beckett, Scott A; Landrigan, Christopher P (2016) Applying mathematical models to predict resident physician performance and alertness on traditional and novel work schedules. BMC Med Educ 16:239
Lo, Men-Tzung; Chiang, Wei-Yin; Hsieh, Wan-Hsin et al. (2016) Interactive Effects of Dorsomedial Hypothalamic Nucleus and Time-Restricted Feeding on Fractal Motor Activity Regulation. Front Physiol 7:174
Shaw, Natalie D; McHill, Andrew W; Schiavon, Michele et al. (2016) Effect of Slow Wave Sleep Disruption on Metabolic Parameters in Adolescents. Sleep 39:1591-9
Duffy, Jeanne F; Scheuermaier, Karine; Loughlin, Kevin R (2016) Age-Related Sleep Disruption and Reduction in the Circadian Rhythm of Urine Output: Contribution to Nocturia? Curr Aging Sci 9:34-43
Bermudez, Eduardo B; Klerman, Elizabeth B; Czeisler, Charles A et al. (2016) Prediction of Vigilant Attention and Cognitive Performance Using Self-Reported Alertness, Circadian Phase, Hours since Awakening, and Accumulated Sleep Loss. PLoS One 11:e0151770

Showing the most recent 10 out of 171 publications