Core A will facilitate the research aims of all projects and cores by providing all necessary administrative support, by fostering collaborative interactions and cross-fertilization of ideas across projects/cores, by facilitating education/training, and recruitment activities, and by providing for internal and external scientific review of the research. To achieve these objectives, the core will: 1) Monitor fiscal activities of the projects and cores, and centralize the administration of clerical and personnel matters. 2) Facilitate communication among investigators within the Program by holding monthly meetings to discuss progress made in each Program component. Communication and quality control will also be enhanced by a system of internal review of research findings prepared for progress reports and manuscripts. 3) Enhance ongoing scientific education and training of Program investigations through a range of seminar series, each involving a multidisciplinary selection of New York area and national/international speakers from the Alzheimer's disease research fields, the neurosciences, and neuroimaging, respectively. 4) Provide for ongoing scientific review of accomplishments, activities, and future directions of this Program Project by an External Advisory Committee of scientific experts. 5) Provide statistical consultation and develop new statistical methodologies as necessary. 6) Identify, recruit and mentor new investigators and trainees whose research can contribute to the long-range aims of this Program Project. Facilitate the use of resources generated through this Program by other investigators.

Public Health Relevance

This Core supplies essential support for our Program, which advances a novel biological framework for understanding how Alzheimer's disease develops and which identifies new directions for the therapy of AD and possibly other aging-related diseases.

Agency
National Institute of Health (NIH)
Institute
National Institute on Aging (NIA)
Type
Research Program Projects (P01)
Project #
5P01AG017617-13
Application #
8572255
Study Section
Special Emphasis Panel (ZAG1-ZIJ-6)
Project Start
Project End
Budget Start
2013-09-01
Budget End
2014-08-31
Support Year
13
Fiscal Year
2013
Total Cost
$177,269
Indirect Cost
$67,341
Name
Nathan Kline Institute for Psychiatric Research
Department
Type
DUNS #
167204762
City
Orangeburg
State
NY
Country
United States
Zip Code
10962
Li, Wei; Sultana, Nargis; Siraj, Nabeel et al. (2016) Autophagy dysfunction and regulatory cystatin C in macrophage death of atherosclerosis. J Cell Mol Med 20:1664-72
Mathews, Paul M; Levy, Efrat (2016) Cystatin C in aging and in Alzheimer's disease. Ageing Res Rev 32:38-50
Rosa, Elyse; Mahendram, Sujeivan; Ke, Yazi D et al. (2016) Tau downregulates BDNF expression in animal and cellular models of Alzheimer's disease. Neurobiol Aging 48:135-142
Colacurcio, Daniel J; Nixon, Ralph A (2016) Disorders of lysosomal acidification-The emerging role of v-ATPase in aging and neurodegenerative disease. Ageing Res Rev 32:75-88
Strupp, Barbara J; Powers, Brian E; Velazquez, Ramon et al. (2016) Maternal Choline Supplementation: A Potential Prenatal Treatment for Down Syndrome and Alzheimer's Disease. Curr Alzheimer Res 13:97-106
Rao, Mala V; Campbell, Jabbar; Palaniappan, Arti et al. (2016) Calpastatin inhibits motor neuron death and increases survival of hSOD1(G93A) mice. J Neurochem 137:253-65
Tiernan, Chelsea T; Ginsberg, Stephen D; Guillozet-Bongaarts, Angela L et al. (2016) Protein homeostasis gene dysregulation in pretangle-bearing nucleus basalis neurons during the progression of Alzheimer's disease. Neurobiol Aging 42:80-90
Kim, S; Sato, Y; Mohan, P S et al. (2016) Evidence that the rab5 effector APPL1 mediates APP-βCTF-induced dysfunction of endosomes in Down syndrome and Alzheimer's disease. Mol Psychiatry 21:707-16
Jiang, Ying; Rigoglioso, Andrew; Peterhoff, Corrinne M et al. (2016) Partial BACE1 reduction in a Down syndrome mouse model blocks Alzheimer-related endosomal anomalies and cholinergic neurodegeneration: role of APP-CTF. Neurobiol Aging 39:90-8
Morales-Corraliza, Jose; Wong, Harrison; Mazzella, Matthew J et al. (2016) Brain-Wide Insulin Resistance, Tau Phosphorylation Changes, and Hippocampal Neprilysin and Amyloid-β Alterations in a Monkey Model of Type 1 Diabetes. J Neurosci 36:4248-58

Showing the most recent 10 out of 141 publications