The insulin like-growth factor (IGF) system is well recognized to control multiple processes including growth, differentiation, cancer and aging. Our preliminary data includes evidence that genetic variations in the GH- IGF system is involved in human longevity and that the IGF-IGFBP system is a potent modulator of cancer progression in vitro and In vivo. In this project, we propose to utilize an array of unique cell lines and mouse models we have established with focus on IGFBP-deficient mice to determine if they exhibit altered life span or altered stress responsiveness and survival in response to oxidative stress and chemotherapy and to see if fasting results in an additive or antagonistic stress response to toxins. We will also investigate the mechanisms responsible for IGFBP-dependent effects on stress resistance and will examine the differential stress response (DSR) effect in murine genetic models of prostate cancer mated into IGF/IGFBP modified strains. Finally, we plan to investigate if IGF modulating drugs mimic or complement the DSR effects of fasting and diet on stress resistance and longevity in these models. The ultimate goal of this project is to test the hypothesis that lGF-1 and IGFBPs play central roles in the modulation of stress resistance as it relates to aging and diseases of aging. This knowledge can be applied to develop pharmacologic and nutritional interventions that will protect older patients against cancer, chemotherapy and radiotherapy, and other age- dependent diseases caused by endogenous toxins. We will therefore pursue the following specific aims: 1) Investigate the mechanism and differential action of IGFBPs on protection and sensitization of normal and transformed cells in vitro. Our hypothesis is that IGFBPs confer a differential stress resistance effect between primary and cancer cell lines through a dual mechanism involving both IGF-inhibition and direct cellular actions. 2) Define the role of IGFBPs in longevity and in vivo stress resistance through the use of the IGFBPS and IGFBPl knockout mice. 3) Examine the effects of IGF-modulating drugs including IGF-1 receptor blocking-antibodies on stress resistance and longevity in mice. 4) Determine the effects of IGF and IGFBPs on survival in prostate cancer models by mating IGF/IGFBP altered mice into genetic prostate cancer models, testing the progression of prostate cancer. Together, these studies will develop new strategies to understand the molecular mechanisms of cellular protection and apply them to differential protection of normal and cancer cells and the development of strategies to enhance healthy aging

Public Health Relevance

;The insulin-like growth factor (IGF) system is a complex biological pathway that controls cellular and organismal growth and differentiation;and has been linked to aging and longevity on one hand and to cancer progression on the other. We will address important implications of potential therapies that target IGF activity and examine their effects on lifespan and on cancer development in mouse models. Our work will have direct relevance to the health of elderly Americans, as it will pave the way towards safe and effective approaches to enhance lifespan and health-span extension and healthy aging.

National Institute of Health (NIH)
National Institute on Aging (NIA)
Research Program Projects (P01)
Project #
Application #
Study Section
Special Emphasis Panel (ZAG1-ZIJ-5)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Southern California
Los Angeles
United States
Zip Code
Huffman, Derek M; Farias Quipildor, Gabriela; Mao, Kai et al. (2016) Central insulin-like growth factor-1 (IGF-1) restores whole-body insulin action in a model of age-related insulin resistance and IGF-1 decline. Aging Cell 15:181-6
Sreekumar, Parameswaran G; Ishikawa, Keijiro; Spee, Chris et al. (2016) The Mitochondrial-Derived Peptide Humanin Protects RPE Cells From Oxidative Stress, Senescence, and Mitochondrial Dysfunction. Invest Ophthalmol Vis Sci 57:1238-53
Longo, Valter D; Panda, Satchidananda (2016) Fasting, Circadian Rhythms, and Time-Restricted Feeding in Healthy Lifespan. Cell Metab 23:1048-59
Lee, Changhan; Kim, Kyung Hwa; Cohen, Pinchas (2016) MOTS-c: A novel mitochondrial-derived peptide regulating muscle and fat metabolism. Free Radic Biol Med 100:182-187
Mitchell, Sarah J; Madrigal-Matute, Julio; Scheibye-Knudsen, Morten et al. (2016) Effects of Sex, Strain, and Energy Intake on Hallmarks of Aging in Mice. Cell Metab 23:1093-112
Marini, Cecilia; Ravera, Silvia; Buschiazzo, Ambra et al. (2016) Discovery of a novel glucose metabolism in cancer: The role of endoplasmic reticulum beyond glycolysis and pentose phosphate shunt. Sci Rep 6:25092
Callisaya, Michele L; Ayers, Emmeline; Barzilai, Nir et al. (2016) Motoric Cognitive Risk Syndrome and Falls Risk: A Multi-Center Study. J Alzheimers Dis 53:1043-52
Mirzaei, Hamed; Raynes, Rachel; Longo, Valter D (2016) The conserved role of protein restriction in aging and disease. Curr Opin Clin Nutr Metab Care 19:74-9
Choi, In Young; Piccio, Laura; Childress, Patra et al. (2016) A Diet Mimicking Fasting Promotes Regeneration and Reduces Autoimmunity and Multiple Sclerosis Symptoms. Cell Rep 15:2136-46
Vernieri, Claudio; Casola, Stefano; Foiani, Marco et al. (2016) Targeting Cancer Metabolism: Dietary and Pharmacologic Interventions. Cancer Discov 6:1315-1333

Showing the most recent 10 out of 61 publications