Avoidance of autoimmunity appears to rely on a carefully orchestrated series of activities involving an appropriate interplay between genetics, the environment, and components of both the innate and adaptive (acquired) immune systems. When this process fails, a variety of autoimmune disorders can arise; including type 1 diabetes where insulin producing pancreatic p cells are destroyed. Adaptive CD4'^ T helper (TH) cells orchestrate the nature and duration of immune responses through distinct properties of lineage-specific cell subsets (e.g., THI, TH17, regulatory T cells (Treg), etc.). The overall objective of Project 2 is to characterize the interplay between antigen presenting cells (APC) and TH subsets, identify their mechanistic contribution to the pathogenesis of TID, evaluate the potential of these cells to serve as markers for autoimmune disease activity. In addition, a major emphasis will be given to evaluate the contributions of specific candidate genotypes previously identified in genome wide association studies (GWAS), for their contribution to immune regulation (Project 2 - ILISRAP, TLRS; Project 1 - IFIHI). This project emanates from literature suggesting that patients with TID exhibit a remarkable loss of immunoregulation whose cellular contributors include proinflammatory APC, unstable and functionally defective Treg, and persistent T effector cells (Teff) that are refractory to regulation. Project 2 will test the hypothesis that in TID, CD4^ T cells are functionally defective and that the molecular & cellular basis for this defect resides in interactions between the innate and adaptive immune response (including dendritic cells, natural killer (NK) cells, & iNKT cells) as well as the balance between Teff and Treg subsets. We believe Project 2 finds marked innovation through the integrative approach afforded by the POI mechanism, the use of novel methodologies to isolate the cellular source of defects, the study of genetic loci underrepresented in TID research and quite importantly, our ability to explore lymphoid and pancreatic tissues and cells from the nPOD program.

Public Health Relevance

Patients with TID, as well as those at risk for developing the disease, would benefit from this research in it's provision of an improved understanding of how and why the disorder develops. In addition. Project 2 holds the promise of providing improved biomarkers that better identify risk for developing TID, as well as novel therapeutics capable of preventing and/or reversing the disease.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Program Projects (P01)
Project #
4P01AI042288-18
Application #
9052686
Study Section
Special Emphasis Panel (ZAI1)
Project Start
Project End
Budget Start
2016-05-01
Budget End
2017-04-30
Support Year
18
Fiscal Year
2016
Total Cost
Indirect Cost
Name
University of Florida
Department
Type
DUNS #
969663814
City
Gainesville
State
FL
Country
United States
Zip Code
32611
Perry, Daniel J; Wasserfall, Clive H; Oram, Richard A et al. (2018) Application of a Genetic Risk Score to Racially Diverse Type 1 Diabetes Populations Demonstrates the Need for Diversity in Risk-Modeling. Sci Rep 8:4529
Chen, Yi-Guang; Mathews, Clayton E; Driver, John P (2018) The Role of NOD Mice in Type 1 Diabetes Research: Lessons from the Past and Recommendations for the Future. Front Endocrinol (Lausanne) 9:51
Kusmartseva, Irina; Beery, Maria; Philips, Tiffany et al. (2018) Hospital time prior to death and pancreas histopathology: implications for future studies. Diabetologia 61:954-958
Hu, Ronghua; Xia, Chang-Qing; Butfiloski, Edward et al. (2018) Effect of high glucose on cytokine production by human peripheral blood immune cells and type I interferon signaling in monocytes: Implications for the role of hyperglycemia in the diabetes inflammatory process and host defense against infection. Clin Immunol 195:139-148
Smith, Mia J; Rihanek, Marynette; Wasserfall, Clive et al. (2018) Loss of B-Cell Anergy in Type 1 Diabetes Is Associated With High-Risk HLA and Non-HLA Disease Susceptibility Alleles. Diabetes 67:697-703
Wallet, Mark A; Santostefano, Katherine E; Terada, Naohiro et al. (2017) Isogenic Cellular Systems Model the Impact of Genetic Risk Variants in the Pathogenesis of Type 1 Diabetes. Front Endocrinol (Lausanne) 8:276
Seay, Howard R; Putnam, Amy L; Cserny, Judit et al. (2017) Expansion of Human Tregs from Cryopreserved Umbilical Cord Blood for GMP-Compliant Autologous Adoptive Cell Transfer Therapy. Mol Ther Methods Clin Dev 4:178-191
Wasserfall, Clive; Nick, Harry S; Campbell-Thompson, Martha et al. (2017) Persistence of Pancreatic Insulin mRNA Expression and Proinsulin Protein in Type 1 Diabetes Pancreata. Cell Metab 26:568-575.e3
Li, Xia; Campbell-Thompson, Martha; Wasserfall, Clive H et al. (2017) Serum Trypsinogen Levels in Type 1 Diabetes. Diabetes Care 40:577-582
Chen, Jing; Chernatynskaya, Anna V; Li, Jian-Wei et al. (2017) T cells display mitochondria hyperpolarization in human type 1 diabetes. Sci Rep 7:10835

Showing the most recent 10 out of 117 publications