This renewal of the program project "Modulation of biodefense responses to microbial pathogens" is composed of four projects and three cores focused on the immune response to Category B and C Biodefense Pathogens and their products. The central hypothesis is that early events during activation of the mucosal innate and adaptive immune responses determine whether or not immunity or injury is induced in response to infection, or bacterial toxin exposure, respectively. Each project focuses on a unique aspect of the theme to advance our overall understanding of the mucosal immune response to infectious agents or their toxins. Since human disease can be easily spread by deliberate or accidental contamination of food, water, or air, our focus is on mucosal tissues at the interface with environmental exposure. Project 1 (Lefrancois) proposes to investigate the mechanisms regulating the intestinal mucosal T cell response to oral Listeria monocytogenes infection (LM). A novel system that mimics human infection will be employed. Project 2 (McSorley) will examine a new model of relapsing Salmonella infection and will define the critical requirements to elicit protective immunity. Project 3 (Vella) will determine how pulmonary administration of Staphylococcus aureus enterotoxin mediates acute lung injury. An innovative proteomic mining strategy will be used to test the novel hypothesis that T cell responses against enterotoxins guide a cell damage process that manifests in profound lung pathology. Project 4 (Cauley) will investigate the mechanisms that support sustained cellular immunity in the lungs against influenza virus infection. The projects utilize in vivo models, in-depth cellular immunological techniques and state-of-the-art imaging and are supported by 3 cores: administrative, flow cytometry and fluorescence microscopy. The projects and cores synergistically interact and mutually reinforce one another to achieve the goals of the program. Coupled with strong institutional support, it is anticipated that significant new insights in immune response regulatio to pathogens and their byproducts will continue to be obtained.

Public Health Relevance

The work performed under this Program has direct relevance to the development of vaccines and countermeasures for protection against viral and bacterial pathogens and their products. The studies described will provide an in-depth understanding of how productive and sometimes destructive mucosal immune responses are induced and controlled.

National Institute of Health (NIH)
National Institute of Allergy and Infectious Diseases (NIAID)
Research Program Projects (P01)
Project #
Application #
Study Section
Special Emphasis Panel (ZAI1-PA-I (S1))
Program Officer
Miller, Lara R
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Connecticut
Schools of Medicine
United States
Zip Code
Atif, Shaikh M; Lee, Seung-Joo; Li, Lin-Xi et al. (2015) Rapid CD4+ T-cell responses to bacterial flagellin require dendritic cell expression of Syk and CARD9. Eur J Immunol 45:513-24
Nanton, Minelva R; Lee, Seung-Joo; Atif, Shaikh M et al. (2015) Direct visualization of endogenous Salmonella-specific B cells reveals a marked delay in clonal expansion and germinal center development. Eur J Immunol 45:428-41
O'Donnell, Hope; Pham, Oanh H; Li, Lin-xi et al. (2014) Toll-like receptor and inflammasome signals converge to amplify the innate bactericidal capacity of T helper 1 cells. Immunity 40:213-24
McSorley, Stephen J (2014) Immunity to intestinal pathogens: lessons learned from Salmonella. Immunol Rev 260:168-82
Sheridan, Brian S; Pham, Quynh-Mai; Lee, Young-Tae et al. (2014) Oral infection drives a distinct population of intestinal resident memory CD8(+) T cells with enhanced protective function. Immunity 40:747-57
Wu, Tao; Hu, Yinghong; Lee, Young-Tae et al. (2014) Lung-resident memory CD8 T cells (TRM) are indispensable for optimal cross-protection against pulmonary virus infection. J Leukoc Biol 95:215-24
Kumar, S; Colpitts, S L; Menoret, A et al. (2013) Rapid ** T-cell responses orchestrate innate immunity in response to Staphylococcal enterotoxin A. Mucosal Immunol 6:1006-15
Wright, Kyle T; Vella, Anthony T (2013) RKIP contributes to IFN-? synthesis by CD8+ T cells after serial TCR triggering in systemic inflammatory response syndrome. J Immunol 191:708-16
Blair, David A; Turner, Damian L; Bose, Tina O et al. (2011) Duration of antigen availability influences the expansion and memory differentiation of T cells. J Immunol 187:2310-21
Griffin, A J; McSorley, S J (2011) Development of protective immunity to Salmonella, a mucosal pathogen with a systemic agenda. Mucosal Immunol 4:371-82

Showing the most recent 10 out of 46 publications