The biodefense agent Staphylococcus aureus enterotoxin is regarded as a superantigen (SAg) because it is not processed as conventional peptide and is an incredibly powerful T cell stimulant. Enterotoxins can cause lethal toxic shock in humans and intentional aerosol exposure of S. aureus enterotoxin has the potential to incapacitate large groups of people. The consequences of such a biological attack can lead to severe respiratory illness in exposed individuals. Notwithstanding, certain pulmonary diseases in human patients have recently been associated with the presence of SAg, and stimulation of T cells with SAg in the respiratory tract drives an inflammatory cascade resulting in severe pathological outcomes in the lung. This includes pulmonary inflammation, vascular permeability and alveolitis. Although this pathogenic response involves SAg-specific T cells, the underlying mechanism of disease initiation and mediators of lung inflammation are unclear. Our data show that innate cell recruitment and their activation in lung are dependent upon TCR V? bearing T cells and occurs rapidly after exposure. A new finding clearly demonstrates this point since only a few hours after SAg inhalation y.ST cells begin to synthesize I L-17a. The biodefense agent Staphylococcus aureus enterotoxin is regarded as a superantigen (SAg) because it is not processed as conventional peptide and is an incredibly powerful T cell stimulant. Enterotoxins can cause lethal toxic shock in humans and intentional aerosol exposure of S. aureus enterotoxin has the potential to incapacitate large groups of people. The consequences of such a biological attack can lead to severe respiratory illness in exposed individuals. Notwithstanding, certain pulmonary diseases in human patients have recently been associated with the presence of SAg, and stimulation of T cells with SAg in the respiratory tract drives an inflammatory cascade resulting in severe pathological outcomes in the lung. This includes pulmonary inflammation, vascular permeability and alveolitis. Although this pathogenic response involves SAg-specific T cells, the underlying mechanism of disease initiation and mediators of lung inflammation are unclear. Our data show that innate cell recruitment and their activation in lung are dependent upon TCR V ? bearing T cells and occurs rapidly after exposure. A new finding clearly demonstrates this point since only a few hours after SAg inhalation y.ST cells begin to synthesize IL-17a. Unexpectedly, IL-I7a production was shown to be dependent on the presence of TCR V? T cells. The role of SAg-specific T cell sub-populations involved in controlling ??T cell activation will be investigated in Aim 1. A consequence of early innate cell activation is pulmonary tissue injury, and by proteomic mining of bronchoalveolar lavage fluid we detected intracellular proteins that may have come from damaged lung cells.
In Aim 2 we will purify and characterize a protease-sensitive factor that we detected in bronchoalveolar lavage fluid which has characteristics of a DAMP. Our goal is to identify this molecule and validate its ability to stimulate cytokine release by defining its cellular target and signaling properties. Lastly, an outcome of DAMP activity is intensification of inflammation, and in this regard our new data show a potential role for the IL-33 pathway.
Aim 3 will test how S. aureus enterotoxin inhalation impacts the IL-33 pathway and if it can be modulated to develop countermeasures against a pulmonary crisis.

Public Health Relevance

The study of enterotoxins released from Staphylococcus aureus is an important area of research due to the role these proteins play in inducing very strong immune responses. The nature of these proteins allows T cells to respond vigorously which can lead to serious illness in people for which there is no clear treatment. This proposal will address important issues centered on understanding the initiation of these responses.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Program Projects (P01)
Project #
5P01AI056172-09
Application #
8728380
Study Section
Special Emphasis Panel (ZAI1-PA-I)
Project Start
Project End
Budget Start
2014-05-01
Budget End
2015-04-30
Support Year
9
Fiscal Year
2014
Total Cost
$407,880
Indirect Cost
$118,708
Name
University of Connecticut
Department
Type
DUNS #
022254226
City
Farmington
State
CT
Country
United States
Zip Code
06030
Atif, Shaikh M; Lee, Seung-Joo; Li, Lin-Xi et al. (2015) Rapid CD4+ T-cell responses to bacterial flagellin require dendritic cell expression of Syk and CARD9. Eur J Immunol 45:513-24
Nanton, Minelva R; Lee, Seung-Joo; Atif, Shaikh M et al. (2015) Direct visualization of endogenous Salmonella-specific B cells reveals a marked delay in clonal expansion and germinal center development. Eur J Immunol 45:428-41
O'Donnell, Hope; Pham, Oanh H; Li, Lin-xi et al. (2014) Toll-like receptor and inflammasome signals converge to amplify the innate bactericidal capacity of T helper 1 cells. Immunity 40:213-24
McSorley, Stephen J (2014) Immunity to intestinal pathogens: lessons learned from Salmonella. Immunol Rev 260:168-82
Sheridan, Brian S; Pham, Quynh-Mai; Lee, Young-Tae et al. (2014) Oral infection drives a distinct population of intestinal resident memory CD8(+) T cells with enhanced protective function. Immunity 40:747-57
Wu, Tao; Hu, Yinghong; Lee, Young-Tae et al. (2014) Lung-resident memory CD8 T cells (TRM) are indispensable for optimal cross-protection against pulmonary virus infection. J Leukoc Biol 95:215-24
Kumar, S; Colpitts, S L; Menoret, A et al. (2013) Rapid ** T-cell responses orchestrate innate immunity in response to Staphylococcal enterotoxin A. Mucosal Immunol 6:1006-15
Wright, Kyle T; Vella, Anthony T (2013) RKIP contributes to IFN-? synthesis by CD8+ T cells after serial TCR triggering in systemic inflammatory response syndrome. J Immunol 191:708-16
Blair, David A; Turner, Damian L; Bose, Tina O et al. (2011) Duration of antigen availability influences the expansion and memory differentiation of T cells. J Immunol 187:2310-21
Griffin, A J; McSorley, S J (2011) Development of protective immunity to Salmonella, a mucosal pathogen with a systemic agenda. Mucosal Immunol 4:371-82

Showing the most recent 10 out of 46 publications