Staphylococcus aureus is key pathogen involved in nosocomial infections, frequently due to biofilm formation on indwelling devices. Once biofilms grow on these surfaces they are difficult to eradicate because the constituent cells display increased resistance to many antibiotics. This, combined with the fact that a large percentage of S. aureus isolates identified in infections now harbor resistance genes against numerous antibiotics including methicillin and vancomycin (MRSA, VRSA), makes it clear that new ways of combating staphyloccocal biofilm-associated infections need to be developed. This subproject ofthe Harvard-wide collaborative project for new MRSA treatments is focused on the development of anti-biofilm agents that target staphyloccocal biofilms. We have recently discovered two distinct mechanisms for inhibiting biofilm formation in a broad range of organisms, including S. aureus. The first mechanism is based on the finding that bacteria organize many membrane-related processes in functional microdomains that involve unusual lipids, i.e. bacteria have lipid rafts akin to those is found in eukaryotic cells. Interfering with the synthesis of these usual lipids can lead to complete elimination of biofilm formation without a lethal effect on the cells. The second discovery is that bacteria produce D-amino acids late in the life cycle of a biofilm and that these amino acids are incorporated into the peptidoglycan with the consequence that cells are released from the biofilm matrix and the biofilm is thus disassembled. While these processes have been analyzed in detail in the bacterium Bacillus subtilis, little is known about the mechanisms by which lipid synthesis inhibitors or Damino acids prevent biofilm formation in S. aureus. To this end, we propose to: 1) Identify the lipid raft fomiation pathway in S. aureus and determine the mechanism through which anti-lipid raft agents inhibit biofilm formation, and 2) Determine the molecular mechanism through which D-amino acids affect S. aureus biofilms.

Public Health Relevance

The inherent resistance of most biofilms to the action of antibiotics make biofilm-related infections difficult to eradicate. Our research satisfies this important unmet need in treating S. aureus infections by developing agents that prevent biofilm formation or disassemble existing biofilms. These agents are non-lethal to bacteria and therefore have minimal risk of developed resistance, and they can be used in conjunction with existing antibiotics to eliminate S. aureus biofilm-related infections.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Program Projects (P01)
Project #
5P01AI083214-06
Application #
8531137
Study Section
Special Emphasis Panel (ZAI1-LG-M)
Project Start
Project End
Budget Start
2013-09-01
Budget End
2014-08-31
Support Year
6
Fiscal Year
2013
Total Cost
$319,272
Indirect Cost
Name
Massachusetts Eye and Ear Infirmary
Department
Type
DUNS #
073825945
City
Boston
State
MA
Country
United States
Zip Code
02114
Rajagopal, Mithila; Martin, Melissa J; Santiago, Marina et al. (2016) Multidrug Intrinsic Resistance Factors in Staphylococcus aureus Identified by Profiling Fitness within High-Diversity Transposon Libraries. MBio 7:
Cheesman, Hilary K; Feinbaum, Rhonda L; Thekkiniath, Jose et al. (2016) Aberrant Activation of p38 MAP Kinase-Dependent Innate Immune Responses Is Toxic to Caenorhabditis elegans. G3 (Bethesda) 6:541-9
Matano, Leigh M; Morris, Heidi G; Wood, B McKay et al. (2016) Accelerating the discovery of antibacterial compounds using pathway-directed whole cell screening. Bioorg Med Chem 24:6307-6314
Selleck, Elizabeth M; Gilmore, Michael S (2016) Oxygen as a Virulence Determinant in Polymicrobial Infections. MBio 7:
Gaca, Anthony O; Gilmore, Michael S (2016) Killing of VRE Enterococcus faecalis by commensal strains: Evidence for evolution and accumulation of mobile elements in the absence of competition. Gut Microbes 7:90-6
Pasquina, Lincoln; Santa Maria Jr, John P; McKay Wood, B et al. (2016) A synthetic lethal approach for compound and target identification in Staphylococcus aureus. Nat Chem Biol 12:40-5
Kim, Wooseong; Fricke, Nico; Conery, Annie L et al. (2016) NH125 kills methicillin-resistant Staphylococcus aureus persisters by lipid bilayer disruption. Future Med Chem 8:257-69
Rajagopal, Mithila; Walker, Suzanne (2016) Envelope Structures of Gram-Positive Bacteria. Curr Top Microbiol Immunol :
Newman, Martin; Ausubel, Frederick M (2016) Introduction to Gene Editing and Manipulation Using CRISPR/Cas9 Technology. Curr Protoc Mol Biol 115:31.4.1-6
Van Tyne, Daria; Ciolino, Joseph B; Wang, Jay et al. (2016) Novel Phagocytosis-Resistant Extended-Spectrum β-Lactamase-Producing Escherichia coli From Keratitis. JAMA Ophthalmol 134:1306-1309

Showing the most recent 10 out of 97 publications