Core B (Biorepository/Biostatistics). Core B will service Projects 1, 2, and 3 by providing clinically annotated human glioma tissue and serum samples and biostatistics support to the P01.
In Aim #1 (Biorepository), tissue and sera samples from newly diagnosed glioma patients, recurrent glioma patients an biopsy proven cases of radiation necrosis will be prospectively collected and designated for analysis. This will include the initial and longitudinal collection of sera and tumor tissue for a year following diagnosis. Overall, seven collaborating institutions have committed their support to this aim's biospecimen collections.Sample collection, annotation, storage, and analysis between participating sites will be coordinated using a web based sample tracking tool (GBCWEB) that has been created. In addition, the repository will receive and distribute biospecimen samples from non POl collaborating clinical trials that have already tested a specific molecularly targeted therapeutic (e.g. anti-EGFRvlll vaccination-Dr. Sampson, anti-PDGFR inhibition-Dr. Kesari;RTOG Iressa-Dr. Chakravarti). In collaborative fashion. Projects 2 and 3, Core B will test whether the molecular targets of these therapies can be monitored using microvesicle RNA technology. Finally, using the Biostatics and clinical expertise within the core, the Biorepository will generate appropriately powered patient sample sets for testing clinical hypotheses such as whether serum microvesicle RNA signatures of Temozolamide or bevacizamab chemotherapy be determined radiation necrosis versus recurrent glioma be distinguished using microvesicle RNA microarray analysis or whether serum microvesicle tumor specific mutation detection reflects treatment effect or prognosis.
In Aim #2 (Biostatistics), the Core will provide Biostatistical support (Dr. Messer) to all projects and Core C in validating sensitivity and specificity of assays and in appropriate study design.

Public Health Relevance

Glioma contributes the 2nd largest years of life lost to cancer, affecting a young population. It is highly lethal with low duration of survival after diagnosis. The ability to monitor and tailor therapeutics using a serum microvesicle based approach would be a significant advance.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Program Projects (P01)
Project #
5P01CA069246-16
Application #
8475591
Study Section
Special Emphasis Panel (ZCA1-GRB-P)
Project Start
Project End
Budget Start
2013-05-01
Budget End
2014-04-30
Support Year
16
Fiscal Year
2013
Total Cost
$192,874
Indirect Cost
$45,327
Name
Massachusetts General Hospital
Department
Type
DUNS #
073130411
City
Boston
State
MA
Country
United States
Zip Code
02199
Maguire, Casey A; Ramirez, Servio H; Merkel, Steven F et al. (2014) Gene therapy for the nervous system: challenges and new strategies. Neurotherapeutics 11:817-39
Nakashima, Hiroshi; Chiocca, E Antonio (2014) Switching a replication-defective adenoviral vector into a replication-competent, oncolytic adenovirus. J Virol 88:345-53
Kaufmann, Johanna K; Chiocca, E Antonio (2014) Glioma virus therapies between bench and bedside. Neuro Oncol 16:334-51
Rajendran, Lawrence; Bali, Jitin; Barr, Maureen M et al. (2014) Emerging roles of extracellular vesicles in the nervous system. J Neurosci 34:15482-9
Hochberg, Fred H; Atai, Nadia A; Gonda, David et al. (2014) Glioma diagnostics and biomarkers: an ongoing challenge in the field of medicine and science. Expert Rev Mol Diagn 14:439-52
Lai, Charles P; Mardini, Osama; Ericsson, Maria et al. (2014) Dynamic biodistribution of extracellular vesicles in vivo using a multimodal imaging reporter. ACS Nano 8:483-94
Chiocca, E Antonio; Rabkin, Samuel D (2014) Oncolytic viruses and their application to cancer immunotherapy. Cancer Immunol Res 2:295-300
Redzic, Jasmina S; Balaj, Leonora; van der Vos, Kristan E et al. (2014) Extracellular RNA mediates and marks cancer progression. Semin Cancer Biol 28:14-23
Okemoto, Kazuo; Kasai, Kazue; Wagner, Benjamin et al. (2013) DNA demethylating agents synergize with oncolytic HSV1 against malignant gliomas. Clin Cancer Res 19:5952-9
Atai, Nadia A; Balaj, Leonora; van Veen, Henk et al. (2013) Heparin blocks transfer of extracellular vesicles between donor and recipient cells. J Neurooncol 115:343-51

Showing the most recent 10 out of 140 publications