The physics core will serve as a central resource for all physics, computers and dosimetry related services. In the area of computers it will provide hardware and software support for all the Research projects and Cores of the tomotherapy based optimization routines, dose computation, treatment delivery, uncertainty minimization and major tasks would be to organize and apply an integrated database for all aspects of imaging, treatment planning, helical dose delivery and dose reconstruction and verification processes being developed and implemented by tomotherapy. The computation support would also provide integrated information on all treatment protocol related data. A routine quality assurance methodology will be implemented for all computational services. The physics dosimetry component of this core will address specific needs of optimized treatment planning, tomotherapy accelerator system dose output calibration, and safe adaptive delivery of treatments. It will provide tools for necessary immobilization and positioning as well as for monitoring variations of positron and motion. Of importance in this regard is the implementation of a stringent quality assurance for all tomotherapy processes. This will involve the use of a large number of analytical, ionographic and radiodichromic films, thermoluminescent and gel dosimeters. Monte Carlo simulation will be performed as needed.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Program Projects (P01)
Project #
5P01CA088960-02
Application #
6651754
Study Section
Subcommittee E - Prevention &Control (NCI)
Project Start
2002-09-01
Project End
2003-08-31
Budget Start
Budget End
Support Year
2
Fiscal Year
2002
Total Cost
Indirect Cost
Name
University of Wisconsin Madison
Department
Type
DUNS #
161202122
City
Madison
State
WI
Country
United States
Zip Code
53715
Brower, Jeffrey V; Forman, Jeffrey D; Kupelian, Patrick A et al. (2016) Quality of life outcomes from a dose-per-fraction escalation trial of hypofractionation in prostate cancer. Radiother Oncol 118:99-104
Cannon, Donald M; Mehta, Minesh P; Adkison, Jarrod B et al. (2013) Dose-limiting toxicity after hypofractionated dose-escalated radiotherapy in non-small-cell lung cancer. J Clin Oncol 31:4343-8
Hong, Theodore S; Tome, Wolfgang A; Harari, Paul M (2012) Heterogeneity in head and neck IMRT target design and clinical practice. Radiother Oncol 103:92-8
Chi, Alexander; Tomé, Wolfgang A; Fowler, Jack et al. (2011) Stereotactic body radiation therapy in non-small-cell lung cancer: linking radiobiological modeling and clinical outcome. Am J Clin Oncol 34:432-41
Gondi, Vinai; Tome, Wolfgang A; Marsh, James et al. (2010) Estimated risk of perihippocampal disease progression after hippocampal avoidance during whole-brain radiotherapy: safety profile for RTOG 0933. Radiother Oncol 95:327-31
Harari, Paul M; Song, Shiyu; Tomé, Wolfgang A (2010) Emphasizing conformal avoidance versus target definition for IMRT planning in head-and-neck cancer. Int J Radiat Oncol Biol Phys 77:950-8
Deveau, Michael A; Gutiérrez, Alonso N; Mackie, Thomas R et al. (2010) Dosimetric impact of daily setup variations during treatment of canine nasal tumors using intensity-modulated radiation therapy. Vet Radiol Ultrasound 51:90-6
Lawrence, Jessica A; Forrest, Lisa J; Turek, Michelle M et al. (2010) Proof of principle of ocular sparing in dogs with sinonasal tumors treated with intensity-modulated radiation therapy. Vet Radiol Ultrasound 51:561-70
Ritter, Mark; Forman, Jeffrey; Kupelian, Patrick et al. (2009) Hypofractionation for prostate cancer. Cancer J 15:1-6
Schubert, Leah K; Westerly, David C; Tomé, Wolfgang A et al. (2009) A comprehensive assessment by tumor site of patient setup using daily MVCT imaging from more than 3,800 helical tomotherapy treatments. Int J Radiat Oncol Biol Phys 73:1260-9

Showing the most recent 10 out of 50 publications