This program projects focuses on the treatment of cancer using genetically modified T cells. Three of the four projects will undertake clinical trials during the course of the studies. These rely on the availability of a GMP manufacturing facility for the preparation of the cellular therapy products. The GMP Facilities at the Center for Cell and Gene Therapy have been in operation for more than 6 years. The Cell Processing Facility has considerable experience in the preparation of a wide variety of cellular products, including all that would be required for the projects in this application. It has been designated one of three National Somatic Cell Therapy Processing Facilities by the NHLBI under its Production Assistance for Cell Therapy Contract Program. It consists of more than 6,000 square feet of HEPA filtered, Class 10,000 space, divided into 8 cell preparation laboratories, a low temperature storage area, a Class 1,000 cell sorting and analysis laboratory, a large equipment area and a central supply facility. The Facility is well equipped to operate under GMP conditions, with extensive documentation systems, barcoding, environmental monitoring and quality assurance, control and improvement programs. Additional components of the Core are the Quality Control Laboratory, which performs in-house testing of cellular products and vectors, and is responsible for routine monitoring of Good Manufacturing Practices;and the Quality Assurance Group that ensures compliance with GMP and provides independent overview of all aspects of manufacturing and release. The GMP staff also have extensive regulatory experience and will liaise with the projects and Core A to facilitate translation of laboratory studies into feasible clinical trials. In summary, the Cell Processing Core is a vital component of the Program Project that will provide services that are essential to the implementation of the clinical studies in Projects 1, 3 and 4.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Program Projects (P01)
Project #
5P01CA094237-10
Application #
8378618
Study Section
Special Emphasis Panel (ZCA1-RPRB-J)
Project Start
Project End
Budget Start
2012-02-01
Budget End
2013-01-31
Support Year
10
Fiscal Year
2012
Total Cost
$311,911
Indirect Cost
$107,144
Name
Baylor College of Medicine
Department
Type
DUNS #
051113330
City
Houston
State
TX
Country
United States
Zip Code
77030
Shum, Thomas; Kruse, Robert L; Rooney, Cliona M (2018) Strategies for enhancing adoptive T-cell immunotherapy against solid tumors using engineered cytokine signaling and other modalities. Expert Opin Biol Ther 18:653-664
Bajgain, Pradip; Tawinwung, Supannikar; D'Elia, Lindsey et al. (2018) CAR T cell therapy for breast cancer: harnessing the tumor milieu to drive T cell activation. J Immunother Cancer 6:34
McLaughlin, Lauren P; Rouce, Rayne; Gottschalk, Stephen et al. (2018) EBV/LMP-specific T cells maintain remissions of T- and B-cell EBV lymphomas after allogeneic bone marrow transplantation. Blood 132:2351-2361
Heslop, Helen E; Brenner, Malcolm K (2018) Seek and You Will Not Find: Ending the Hunt for Replication-Competent Retroviruses during Human Gene Therapy. Mol Ther 26:1-2
Mamonkin, Maksim; Mukherjee, Malini; Srinivasan, Madhuwanti et al. (2018) Reversible Transgene Expression Reduces Fratricide and Permits 4-1BB Costimulation of CAR T Cells Directed to T-cell Malignancies. Cancer Immunol Res 6:47-58
Kalra, Mamta; Gerdemann, Ulrike; Luu, Jessica D et al. (2018) Epstein-Barr Virus (EBV)-derived BARF1 encodes CD4- and CD8-restricted epitopes as targets for T-cell immunotherapy. Cytotherapy :
Bollard, Catherine M; Tripic, Tamara; Cruz, Conrad Russell et al. (2018) Tumor-Specific T-Cells Engineered to Overcome Tumor Immune Evasion Induce Clinical Responses in Patients With Relapsed Hodgkin Lymphoma. J Clin Oncol 36:1128-1139
Lyon, Deborah; Lapteva, Natasha; Gee, Adrian P (2018) Absence of Replication-Competent Retrovirus in Vectors, T Cell Products, and Patient Follow-Up Samples. Mol Ther 26:6-7
Mata, Melinda; Gerken, Claudia; Nguyen, Phuong et al. (2017) Inducible Activation of MyD88 and CD40 in CAR T Cells Results in Controllable and Potent Antitumor Activity in Preclinical Solid Tumor Models. Cancer Discov 7:1306-1319
Tzannou, Ifigeneia; Papadopoulou, Anastasia; Naik, Swati et al. (2017) Off-the-Shelf Virus-Specific T Cells to Treat BK Virus, Human Herpesvirus 6, Cytomegalovirus, Epstein-Barr Virus, and Adenovirus Infections After Allogeneic Hematopoietic Stem-Cell Transplantation. J Clin Oncol 35:3547-3557

Showing the most recent 10 out of 217 publications