The aims of the Neuropathology Core are: To establish a comprehensive and standardized histopathological service to research groups in the Program. ? To provide advice and expertise on neuropathological interpretation to research groups in the Program. ? To record histopathological findings and assessments in a form that is both accessible to the research groups in the Program and readily integrated with other data for the purposes of comparative analysis. ? To establish a comparative classification of human and mouse model CNS tumors. A uniform approach to histological analysis is essential to this Program. High quality methodologies and expert evaluation of preparations will enable a robust and detailed characterization of human and mouse central nervous system (CNS) tumors from across the Program. There is scope for a detailed comparative analysis at histological and molecular levels of human and mouse model CNS tumors, both within one histopathological category, e.g. primitive neuroectodermal tumors (PNETs), and across categories, e.g. PNETs versus gliomas. Histopathological analysis will be critical for validation of genetic modification in mouse model tumors, human and mouse tumor cell characterization at the immunohistochemical and molecular cytogenetic levels, and determining the effects of novel small-molecule pharmacological agents. New diagnostic approaches combining histopathological and molecular analyses will be generated by these studies, and could form the basis for patient stratification in future clinical trials of novel therapies

Public Health Relevance

An increased understanding of the development and biology of brain tumors in childhood will advance treatment of these devastating diseases. Central to such therapeutic advances will be novel diagnostic approaches that combine histopathological and molecular analyses, so that treatment can be tailored to specific characteristics in tumor cells. As part of this Program, the Neuropathology Core expects to develop such novel diagnostic approaches for a range of childhood brain tumors

National Institute of Health (NIH)
National Cancer Institute (NCI)
Research Program Projects (P01)
Project #
Application #
Study Section
Special Emphasis Panel (ZCA1-GRB-S)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
St. Jude Children's Research Hospital
United States
Zip Code
Dumitrache, Lavinia C; McKinnon, Peter J (2017) Polynucleotide kinase-phosphatase (PNKP) mutations and neurologic disease. Mech Ageing Dev 161:121-129
Hoch, Nicolas C; Hanzlikova, Hana; Rulten, Stuart L et al. (2017) XRCC1 mutation is associated with PARP1 hyperactivation and cerebellar ataxia. Nature 541:87-91
Vo, BaoHan T; Li, Chunliang; Morgan, Marc A et al. (2017) Inactivation of Ezh2 Upregulates Gfi1 and Drives Aggressive Myc-Driven Group 3 Medulloblastoma. Cell Rep 18:2907-2917
Wei, Lei; Murphy, Brian L; Wu, Gang et al. (2017) Exome sequencing analysis of murine medulloblastoma models identifies WDR11 as a potential tumor suppressor in Group 3 tumors. Oncotarget 8:64685-64697
Illuzzi, Jennifer L; McNeill, Daniel R; Bastian, Paul et al. (2017) Tumor-associated APE1 variant exhibits reduced complementation efficiency but does not promote cancer cell phenotypes. Environ Mol Mutagen 58:84-98
Genthe, Jamie R; Min, Jaeki; Farmer, Dana M et al. (2017) Ventromorphins: A New Class of Small Molecule Activators of the Canonical BMP Signaling Pathway. ACS Chem Biol 12:2436-2447
Pajtler, Kristian W; Mack, Stephen C; Ramaswamy, Vijay et al. (2017) The current consensus on the clinical management of intracranial ependymoma and its distinct molecular variants. Acta Neuropathol 133:5-12
Fukuda, Yu; Wang, Yao; Lian, Shangli et al. (2017) Upregulated heme biosynthesis, an exploitable vulnerability in MYCN-driven leukemogenesis. JCI Insight 2:
Nakanishi, Takeo; Ohno, Yasuhiro; Aotani, Rika et al. (2017) A novel role for OATP2A1/SLCO2A1 in a murine model of colon cancer. Sci Rep 7:16567
Enriquez-Rios, Vanessa; Dumitrache, Lavinia C; Downing, Susanna M et al. (2017) DNA-PKcs, ATM, and ATR Interplay Maintains Genome Integrity during Neurogenesis. J Neurosci 37:893-905

Showing the most recent 10 out of 186 publications