The sphingolipid ceramide, a bioeffector lipid, is known to regulate anti-proliferative and stress responses in various human cancer cells. Studies from this project have defined a novel pathway for the generation of ceramide, 'the salvage pathway', which involves activation of acid sphingomyelinase (aSMase). Interestingly, our preliminary results show that the cytotoxic agents cisplatin, doxorubicin, and paclitaxel exert significant effects on the adhesion and migration of cancer cells, at sub-toxic concentrations. Importantly, these results suggest an important role for the aSMase/ceramide pathway in regulating these responses. These data and insights lead us to the HYPOTHESIS that the aSMase/ceramide pathway is an important mediator of stress inducers, with key roles in regulating cell migration and metastasis. Therefore, 3 specific aims are proposed: 1) To define molecular mechanisms of activation of aSMase. We will focus on defining a) the role of PKC3 as an upstream kinase in regulation of aSMase;b) the biochemical and cellular mechanisms by which phosphorylation activates the enzyme;and c) the cellular compartment where aSMase is activated. 2) To determine the role of aSMase in tumor growth and metastasis and response to chemotherapy by: a) establishing the role of aSMase/ceramide in cell adhesion/migration of cancer cells;b) examining and defining the role of this pathway in tumor metastasis/growth in vivo. 3) To determine the mechanisms by which the aSMase/ceramide pathway mediates cell stress responses. Understanding this pathway should have great impact on the field of ceramide-mediated biology precisely by beginning to untangle the complexity of these pathways through provision of pathway-specific insight. Equally as important, defining upstream and downstream components of this pathway, which is activated by agents of significant therapeutic value, may result in defining novel therapeutic targets in cancer therapy. Finally, there is the tantalizing possibility that the role of this pathway in inhibition of cell migration in response to chemotherapeutic agents may lead to a re-examination of therapeutically relevant actions of these agents by focusing on their effects on migration and metastasis rather than on cytotoxicity or proliferation.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Program Projects (P01)
Project #
7P01CA097132-10
Application #
8381023
Study Section
Special Emphasis Panel (ZCA1-RPRB-O)
Project Start
Project End
2014-07-31
Budget Start
2012-08-01
Budget End
2013-07-31
Support Year
10
Fiscal Year
2012
Total Cost
$191,961
Indirect Cost
$37,225
Name
State University New York Stony Brook
Department
Type
DUNS #
804878247
City
Stony Brook
State
NY
Country
United States
Zip Code
11794
Bai, Aiping; Bielawska, Alicja; Rahmaniyan, Mehrdad et al. (2018) Dose dependent actions of LCL521 on acid ceramidase and key sphingolipid metabolites. Bioorg Med Chem 26:6067-6075
Newcomb, Benjamin; Rhein, Cosima; Mileva, Izolda et al. (2018) Identification of an acid sphingomyelinase ceramide kinase pathway in the regulation of the chemokine CCL5. J Lipid Res 59:1219-1229
Espaillat, Mel Pilar; Snider, Ashley J; Qiu, Zhijuan et al. (2018) Loss of acid ceramidase in myeloid cells suppresses intestinal neutrophil recruitment. FASEB J 32:2339-2353
Hannun, Yusuf A; Obeid, Lina M (2018) Sphingolipids and their metabolism in physiology and disease. Nat Rev Mol Cell Biol 19:175-191
Schwartz, Nicholas U; Linzer, Ryan W; Truman, Jean-Philip et al. (2018) Decreased ceramide underlies mitochondrial dysfunction in Charcot-Marie-Tooth 2F. FASEB J 32:1716-1728
Moorthi, Sitapriya; Burns, Tara Ann; Yu, Gui-Qin et al. (2018) Bcr-Abl regulation of sphingomyelin synthase 1 reveals a novel oncogenic-driven mechanism of protein up-regulation. FASEB J 32:4270-4283
Morris, Thomas G; Borland, Samantha J; Clarke, Christopher J et al. (2018) Sphingosine 1-phosphate activation of ERM contributes to vascular calcification. J Lipid Res 59:69-78
Coant, Nicolas; García-Barros, Mónica; Zhang, Qifeng et al. (2018) AKT as a key target for growth promoting functions of neutral ceramidase in colon cancer cells. Oncogene 37:3852-3863
Ren, Jihui; Snider, Justin; Airola, Michael V et al. (2018) Quantification of 3-ketodihydrosphingosine using HPLC-ESI-MS/MS to study SPT activity in yeast Saccharomyces cerevisiae. J Lipid Res 59:162-170
Shimizu, Yoshiko; Furuya, Hideki; Tamashiro, Paulette M et al. (2018) Genetic deletion of sphingosine kinase 1 suppresses mouse breast tumor development in an HER2 transgenic model. Carcinogenesis 39:47-55

Showing the most recent 10 out of 215 publications