The goal of this project is to identify genetic alterations that contribute to the pathogenesis of therapyrelated acute myeloid leukemia and myelodysplastic syndrome (t-AML/t-MDS). These disorders are emerging as a major clinical problem, now accounting for 10-20% of all new cases of AML, with a rising incidence. The available treatments for these diseases have limited efficacy, and the prognosis is very poor, highlighting the need for new therapies. However, the genetic alterations that contribute to t-AML/t- MDS pathogenesis are largely unknown, limiting the development of novel targeted therapies. Major improvements in the clinical management of patients with t-AML/t-MDS are unlikely without a better understanding of the genetic alterations contributing to t-AML/t-MDS susceptibility, transformation, and resistance to chemotherapy. To identify these genetic alterations, the following specific aims are proposed.
Aim 1. We will identify novel recurring somatic mutations in t-AML/t-MDS. We propose to sequence at least 150 t-AML/t-MDS genomes over the 5-year grant period. These data will be compared with cfe novo AML/MDS to determine whether prior exposure to chemotherapy or radiotherapy affects the spectrum of somatic mutations found in the tumors. Biological studies will be performed on selected novel recurring mutations to define their contribution to leukemic transformation.
Aim 2. We will characterize clonal progression in t-AML/t-MDS. We will take advantage of hematopoietic tissue banked prior to the development of t-AML/t-MDS to address the following questions: 1) does clonal hematopoiesis develop after exposure to intensive chemotherapy;2) are certain mutations preferentially acquired early during;3) are mutations that confer resistance to chemotherapy present in hematopoietic stem cell (HSC) clones prior to exposure to chemotherapy;and 4) in cases of t-AML/t-MDS arising after lymphoma, do these tumors share mutations, suggesting a common founder HSC clone? Aim 3. We will determine whether specific small non-coding RNAs (SncRNAs) are consistently dysregulated or mutated in t-AML/t-MDS. We propose to sequence the small RNA transcriptome in t- AML/t-MDS. This data will be use to: 1) identify sncRNAs that are dysregulated in t-AML/t-MDS relative to CD34+ progenitors from healthy donors and leukemic blasts from de novo AML, and 2) to identify novel sncRNAs and determine whether they are targets for somatic mutation in AML. Biological studies will be performed to define the contribution of selected sncRNAs to leukemic transformation.

Public Health Relevance

Therapy-related acute myeloid leukemia or myelodysplastic syndrome (t-AML/t-MDS) is a devastating complication of chemotherapy whose incidence is rising. The prognosis of t-AML/t-MDS is dismal and treatment options limited. The goal of this research is to define the genetic basis of t-AML/t-MDS to help understand its pathogenesis and to develop better (targeted) therapies.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Program Projects (P01)
Project #
5P01CA101937-11
Application #
8696962
Study Section
Special Emphasis Panel (ZCA1-RPRB-J)
Project Start
Project End
Budget Start
2014-04-01
Budget End
2015-03-31
Support Year
11
Fiscal Year
2014
Total Cost
$325,498
Indirect Cost
$101,870
Name
Washington University
Department
Type
DUNS #
068552207
City
Saint Louis
State
MO
Country
United States
Zip Code
63130
Duncavage, Eric J; Jacoby, Meagan A; Chang, Gue Su et al. (2018) Mutation Clearance after Transplantation for Myelodysplastic Syndrome. N Engl J Med 379:1028-1041
Schroeder, Mark A; Choi, Jaebok; Staser, Karl et al. (2018) The Role of Janus Kinase Signaling in Graft-Versus-Host Disease and Graft Versus Leukemia. Biol Blood Marrow Transplant 24:1125-1134
Christopher, Matthew J; Petti, Allegra A; Rettig, Michael P et al. (2018) Immune Escape of Relapsed AML Cells after Allogeneic Transplantation. N Engl J Med 379:2330-2341
Trissal, Maria C; Wong, Terrence N; Yao, Juo-Chin et al. (2018) MIR142 Loss-of-Function Mutations Derepress ASH1L to Increase HOXA Gene Expression and Promote Leukemogenesis. Cancer Res 78:3510-3521
Jacoby, Meagan A; Duncavage, Eric J; Chang, Gue Su et al. (2018) Subclones dominate at MDS progression following allogeneic hematopoietic cell transplant. JCI Insight 3:
Warner, Wayne A; Spencer, David H; Trissal, Maria et al. (2018) Expression profiling of snoRNAs in normal hematopoiesis and AML. Blood Adv 2:151-163
Bansal, Dhruv; Vij, Kiran; Chang, Gue Su et al. (2018) Lenalidomide results in a durable complete remission in acute myeloid leukemia accompanied by persistence of somatic mutations and a T-cell infiltrate in the bone marrow. Haematologica 103:e270-e273
Xia, Jun; Miller, Christopher A; Baty, Jack et al. (2018) Somatic mutations and clonal hematopoiesis in congenital neutropenia. Blood 131:408-416
Fisher, D A C; Malkova, O; Engle, E K et al. (2017) Mass cytometry analysis reveals hyperactive NF Kappa B signaling in myelofibrosis and secondary acute myeloid leukemia. Leukemia 31:1962-1974
Shirai, Cara Lunn; White, Brian S; Tripathi, Manorama et al. (2017) Mutant U2AF1-expressing cells are sensitive to pharmacological modulation of the spliceosome. Nat Commun 8:14060

Showing the most recent 10 out of 122 publications