The four tumor suppressor genes LKBI (gene name STK11), TSCl, TSC2, and PTEN are known to be involved in a wide variety of human cancers, as well as causing human genetic disorders with a high frequency of specific neoplasms. Although drug therapies targeting the affected downstream pathways from the loss of these genes are at various stages of clinical development, including mTORCI inhibitors, clinical experience thus far suggests that in many instances such therapies have limited therapeutic potential in vivo. In this project, we propose a series of studies to examine the effects of loss of each of these four genes in human cancer and in genetically engineered mouse (GEM) models, to develop specific therapies. We will pursue the following specific aims in this proposal. First, we will perform a comparative analysis of human cancer cell lines with loss of TSCl vs. TSC2 vs. LKBI vs. PTEN to identify common and differential effects, and compensatory pathways through transcriptional, proteomic, and metabolomic profiles. Second, we will analyze GEM lung and bladder cancers with Tscl vs. Lkbl vs. Pten loss through similar studies. Third, we will perform a Global shRNA (synthetic lethal) screen to identify critical growth targets in GEM cancer primary cultures with Tscl vs. Lkbl vs. Pten loss. Finally, using information gathered from Aims 1 through 3, we will assess potential drug therapies in the GEM models involving these genes. Thus, we will use integrated approaches to identify critical pathways and therapeutic targets in tumors that have LKBI, TSC1/2, or PTEN loss.

Public Health Relevance

The four genes LKBI, TSC1/2, and PTEN are commonly involved in both cancer families and common adult cancers that occur without a family history. In this project we are seeking to understand the consequences of loss of each gene on tumor development using both human cancer cell lines and mouse models. Our goal is to identify novel therapies for cancers in which these genes are involved.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Research Program Projects (P01)
Project #
Application #
Study Section
Special Emphasis Panel (ZCA1-RPRB-O)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Brigham and Women's Hospital
United States
Zip Code
Liu, Yang; Kwiatkowski, David J (2015) Combined CDKN1A/TP53 mutation in bladder cancer is a therapeutic target. Mol Cancer Ther 14:174-82
Lall, R; Ganapathy, S; Yang, M et al. (2014) Low-dose radiation exposure induces a HIF-1-mediated adaptive and protective metabolic response. Cell Death Differ 21:836-44
Menon, Suchithra; Dibble, Christian C; Talbott, George et al. (2014) Spatial control of the TSC complex integrates insulin and nutrient regulation of mTORC1 at the lysosome. Cell 156:771-85
Tchaicha, Jeremy H; Akbay, Esra A; Altabef, Abigail et al. (2014) Kinase domain activation of FGFR2 yields high-grade lung adenocarcinoma sensitive to a Pan-FGFR inhibitor in a mouse model of NSCLC. Cancer Res 74:4676-84
Bordoli, Mattia R; Yum, Jina; Breitkopf, Susanne B et al. (2014) A secreted tyrosine kinase acts in the extracellular environment. Cell 158:1033-44
Guo, Y; Chirieac, L R; Bueno, R et al. (2014) Tsc1-Tp53 loss induces mesothelioma in mice, and evidence for this mechanism in human mesothelioma. Oncogene 33:3151-60
Tyburczy, Magdalena E; Wang, Ji-An; Li, Shaowei et al. (2014) Sun exposure causes somatic second-hit mutations and angiofibroma development in tuberous sclerosis complex. Hum Mol Genet 23:2023-9
González-Billalabeitia, Enrique; Seitzer, Nina; Song, Su Jung et al. (2014) Vulnerabilities of PTEN-TP53-deficient prostate cancers to compound PARP-PI3K inhibition. Cancer Discov 4:896-904
Kraus, Daniel; Yang, Qin; Kong, Dong et al. (2014) Nicotinamide N-methyltransferase knockdown protects against diet-induced obesity. Nature 508:258-62
Yang, Ping; Cornejo, Kristine M; Sadow, Peter M et al. (2014) Renal cell carcinoma in tuberous sclerosis complex. Am J Surg Pathol 38:895-909

Showing the most recent 10 out of 124 publications