This project aims to develop and test controlled minimally invasive thermal ablation techniques for the treatment of cancers that are attributed to a quarter of cancer deaths.
We aim to provide precise imaging, feedback, and control of the shape and size of thermal lesions to improve the treatment options for these patients. Built upon the foundation of the Stanford Schools of Medicine and Engineering, the Stanford Cancer Center, and collaborators from UCSF and HeartVista, this program brings together five projects: 1) MR-guided HIFU of soft tissue tumors, 2) Minimally Invasive MRI-Guided Management of Prostate Disease, 3) MR-Guided Precision Thermal Therapy of Retroperitoneal Tumors, 4) MRI Methods for Guiding Focused Ultrasound in the Brain and 5) MR-guided RF Ablation. The five projects have many common requirements for programmatic and infrastructure support, which have been consolidated into cores. An engineering core will support Projects 2-5 with control hardware and software, as well as improved device visualization. An in vivo study support core will assist all of the projects with post ablation assessment imaging, correlation with histology, and statistical support. The outcomes of this PPG will be 1) improved minimally-invasive treatment options, 2) an increase in the basic science understanding of tissue response to thermal treatments, and 3) advances in engineering, both hardware and software, specifically for treatment of these cancers.

Public Health Relevance

This project aims to develop and test controlled minimally invasive thermal ablation techniques for the treatment of cancers that are attributed to a quarter of cancer deaths. We aim to provide precise imaging, feedback, and control of the shape and size of thermal lesions.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Program Projects (P01)
Project #
5P01CA159992-02
Application #
8337334
Study Section
Special Emphasis Panel (ZCA1-GRB-P (M1))
Program Officer
Farahani, Keyvan
Project Start
2011-09-22
Project End
2016-08-31
Budget Start
2012-09-01
Budget End
2013-08-31
Support Year
2
Fiscal Year
2012
Total Cost
$1,674,811
Indirect Cost
$550,108
Name
Stanford University
Department
Radiation-Diagnostic/Oncology
Type
Schools of Medicine
DUNS #
009214214
City
Stanford
State
CA
Country
United States
Zip Code
94305
Johnson, Ethan M; Vyas, Urvi; Ghanouni, Pejman et al. (2016) Improved cortical bone specificity in UTE MR Imaging. Magn Reson Med :
Zhu, Kangrong; Dougherty, Robert F; Wu, Hua et al. (2016) Hybrid-Space SENSE Reconstruction for Simultaneous Multi-Slice MRI. IEEE Trans Med Imaging 35:1824-36
Marx, Michael; Butts Pauly, Kim (2016) Improved MRI thermometry with multiple-echo spirals. Magn Reson Med 76:747-56
Vyas, Urvi; Ghanouni, Pejman; Halpern, Casey H et al. (2016) Predicting variation in subject thermal response during transcranial magnetic resonance guided focused ultrasound surgery: Comparison in seventeen subject datasets. Med Phys 43:5170
Adams, Matthew S; Salgaonkar, Vasant A; Plata-Camargo, Juan et al. (2016) Endoluminal ultrasound applicators for MR-guided thermal ablation of pancreatic tumors: Preliminary design and evaluation in a porcine pancreas model. Med Phys 43:4184
Gaur, Pooja; Partanen, Ari; Werner, Beat et al. (2016) Correcting heat-induced chemical shift distortions in proton resonance frequency-shift thermometry. Magn Reson Med 76:172-82
Avedian, Raffi S; Bitton, Rachelle; Gold, Garry et al. (2016) Is MR-guided High-intensity Focused Ultrasound a Feasible Treatment Modality for Desmoid Tumors? Clin Orthop Relat Res 474:697-704
Ghanouni, Pejman; Dobrotwir, Andrew; Bazzocchi, Alberto et al. (2016) Magnetic resonance-guided focused ultrasound treatment of extra-abdominal desmoid tumors: a retrospective multicenter study. Eur Radiol :
Bitton, Rachel R; Webb, Taylor D; Pauly, Kim Butts et al. (2016) Improving thermal dose accuracy in magnetic resonance-guided focused ultrasound surgery: Long-term thermometry using a prior baseline as a reference. J Magn Reson Imaging 43:181-9
Adams, Matthew S; Scott, Serena J; Salgaonkar, Vasant A et al. (2016) Thermal therapy of pancreatic tumours using endoluminal ultrasound: Parametric and patient-specific modelling. Int J Hyperthermia 32:97-111

Showing the most recent 10 out of 48 publications