The efforts planned for this Core, are modeled on the components that have been demonstrated in the previous period of the PPG to enable high productivity and efficient integration. This core is a hub of PPG activities and provides administrative support, and guidance without micromanaging individual project teams. The Core will be responsible for scheduling, organizing, hosting and/or facilitating on a regular basis the meetings that support the progress ofthe PPG. These meetings include (i)-plenary meetings (including Advisors), (ii)-electronic meetings, (iii)-thematic meetings of research groups enabled by participation of PPG teams in National and International conferences. The Core is responsible forthe administration of travel support for these meetings, including the allocation and accounting of funds. The Core is assuring compliance with all institutional, governmental and NIH-specific regulations and requirements, including timely communication with, and Progress Reporting to the NIH. All financial reporting and coordination aspects ofthe PPG that encompasses several major Institutions here and abroad are managed as well through the Core activities. Additional management objectives are to make certain that decisions about allocation (and reallocation) of resources, project expectations and progress, and accomplishing the goals of the PPG are addressed appropriately, fairly and in a well thought out and timely manner. The Core will thus continue to function to ensure the highest possible impact of the PPG's scientific discovery and dissemination activities by (l)-providing the necessary oversight, coordination and administrative support that will ensure the optimal performance of the PPG and its Consortium activities;(2)-providing services in the computational biology and bioinformatics aspects of the PPG, including resource sharing, and the sharing and dissemination of data generated by this Consortium;and (3)-developing an Information Management System for the area of research represented by the PPG, including the computer-facilitated expert annotation system TRansporter Annotation Center (TRAC), and the associated literature-mining tool Coupler.

Public Health Relevance

We study a complex set on cellular machines and functions in a coordinated scientific effort to understand mechanisms essential to maintaining human health and combating disease, such as drug abuse. To bring these efforts together in an efficient and coordinated manner we use an administrative core that fosters the highest standards of scientific research, compliance with all rules and regulation, and the sharing of resources and results within the Consortium and the community at large.

National Institute of Health (NIH)
National Institute on Drug Abuse (NIDA)
Research Program Projects (P01)
Project #
Application #
Study Section
Special Emphasis Panel (ZRG1-MDCN-G)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Weill Medical College of Cornell University
New York
United States
Zip Code
Gregorio, G Glenn; Masureel, Matthieu; Hilger, Daniel et al. (2017) Single-molecule analysis of ligand efficacy in ?2AR-G-protein activation. Nature 547:68-73
Doktorova, M; Harries, D; Khelashvili, G (2017) Determination of bending rigidity and tilt modulus of lipid membranes from real-space fluctuation analysis of molecular dynamics simulations. Phys Chem Chem Phys 19:16806-16818
Razavi, Asghar M; Khelashvili, George; Weinstein, Harel (2017) A Markov State-based Quantitative Kinetic Model of Sodium Release from the Dopamine Transporter. Sci Rep 7:40076
Runegaard, Annika H; Jensen, Kathrine L; Fitzpatrick, Ciarán M et al. (2017) Preserved dopaminergic homeostasis and dopamine-related behaviour in hemizygous TH-Cre mice. Eur J Neurosci 45:121-128
Rahbek-Clemmensen, Troels; Lycas, Matthew D; Erlendsson, Simon et al. (2017) Super-resolution microscopy reveals functional organization of dopamine transporters into cholesterol and neuronal activity-dependent nanodomains. Nat Commun 8:740
Aguilar, Jenny I; Dunn, Matthew; Mingote, Susana et al. (2017) Neuronal Depolarization Drives Increased Dopamine Synaptic Vesicle Loading via VGLUT. Neuron 95:1074-1088.e7
Stolzenberg, Sebastian; Li, Zheng; Quick, Matthias et al. (2017) The role of transmembrane segment 5 (TM5) in Na2 release and the conformational transition of neurotransmitter:sodium symporters toward the inward-open state. J Biol Chem 292:7372-7384
Li, Xue; Maretzky, Thorsten; Perez-Aguilar, Jose Manuel et al. (2017) Structural modeling defines transmembrane residues in ADAM17 that are crucial for Rhbdf2-ADAM17-dependent proteolysis. J Cell Sci 130:868-878
LeVine, Michael V; Cuendet, Michel A; Khelashvili, George et al. (2016) Allosteric Mechanisms of Molecular Machines at the Membrane: Transport by Sodium-Coupled Symporters. Chem Rev 116:6552-87
Vuorenpää, Anne; Jørgensen, Trine N; Newman, Amy H et al. (2016) Differential Internalization Rates and Postendocytic Sorting of the Norepinephrine and Dopamine Transporters Are Controlled by Structural Elements in the N Termini. J Biol Chem 291:5634-51

Showing the most recent 10 out of 137 publications