The in vivo utility, or """"""""drugability"""""""", of a compound requires the molecule to reach the target tissues at sufficient concentrations to elicit the desired biological effect. This includes the need for a simple route of administration. The Drug Metabolism and Pharmacokinetics (DMPK) project aims to rapidly determine key compound liabilities and communicate these with the other project heads to facilitate the rapid optimization of the lead molecules. Past industry strategies emphasizing early optimization of target potency and selectivity without metabolism data resulted in 40% of molecules entering the clinic in 1991 failing for PK or bioavailability reasons. PK failures have been reduced 4-fold due to the early incorporation of DMPK. in addition to metabolism and elimination, pharmacodynamic factors, such as plasma protein binding, solubility, and permeability will influence the ultimate efficacy. Additional studies to determine the potential for drug-drug interactions or reactive intermediate formation will help promote the safest molecules In order to provide this type of crucial information, DMPK studies will be performed throughout the compound optimization phase. Information about the metabolic stability and disposition of the orexin receptor antagonists in vitro and in vivo will be rapidly communicated back to the chemists to facilitate compound optimization. At the early stages of the project, during which time hits are being identified and prioritized, measurements of gross features of bioavailability and metabolism will be made to eliminate candidate compounds. As the project matures, more intensive measurements of compound parameters will be made on a smaller numbers of refined lead structures to guide their development.

Public Health Relevance

Orexin antagonists offer exciting potential as treatments for nicotine dependence. Successfully translating this potential into the discovery of an efficacious drug requires an early understanding the drug metabolism and pharmacokinetic so the whole molecule can be optimized instead of just the biochemical or cellular potency.

Agency
National Institute of Health (NIH)
Institute
National Institute on Drug Abuse (NIDA)
Type
Research Program Projects (P01)
Project #
5P01DA033622-02
Application #
8465867
Study Section
Special Emphasis Panel (ZDA1-JXR-D)
Project Start
Project End
Budget Start
2013-05-01
Budget End
2014-04-30
Support Year
2
Fiscal Year
2013
Total Cost
$285,711
Indirect Cost
$141,413
Name
Scripps Research Institute
Department
Type
DUNS #
781613492
City
La Jolla
State
CA
Country
United States
Zip Code
92037
Wall, Teagan R; Henderson, Brandon J; Voren, George et al. (2017) TC299423, a Novel Agonist for Nicotinic Acetylcholine Receptors. Front Pharmacol 8:641
Patouret, Remi; Kamenecka, Theodore M (2016) Synthesis of 2-aryl-2H-tetrazoles via a regioselective [3+2] cycloaddition reaction. Tetrahedron Lett 57:1597-1599
Doebelin, Christelle; He, Yuanjun; Kamenecka, Theodore M (2016) Multigram-scale Synthesis of Enantiopure 3,3-Difluoroproline. Tetrahedron Lett 57:5658-5660
Robinson, James D; McDonald, Patricia H (2015) The orexin 1 receptor modulates kappa opioid receptor function via a JNK-dependent mechanism. Cell Signal 27:1449-56
Jiang, Rong; Song, Xinyi; Bali, Purva et al. (2012) Disubstituted piperidines as potent orexin (hypocretin) receptor antagonists. Bioorg Med Chem Lett 22:3890-4
Harmey, Dympna; Griffin, Patrick R; Kenny, Paul J (2012) Development of novel pharmacotherapeutics for tobacco dependence: progress and future directions. Nicotine Tob Res 14:1300-18