A number of Gl symptoms and motility disorders, including idiopathic inflammatory bowel diseases (IBD), are linked, directly or indirectly, to defects in the neural control of the Gl system. Neurogenic purines are central to gut motility by providing tonic inhibition in the colon and by influencing gut contractility and propulsion motility. In recent years we have determined that NAD+ and ADP-ribose, but not ATP, fulfill presynaptic and postsynaptic criteria for a motor inhibitory neurotransmitter in the colon. This project will build upon our findings and will pursue the mechanisms of release, metabolism and action of extracellular purines and metabolites with the goal to greatly improve our understanding of key mechanisms of purinergic signaling in the human gut.
In Aim 1 we will investigate key mechanisms of extracellular metabolism of ATP, NAD+ and ADPR, intersecting pathways, and regional prevalence of purinergic metabolic pathways in the large intestine.
In Aim 2 we will investigate the complexities of purinergic regulation in the colon and the postjunctional activities of purines and metabolites on muscle contractility and motility. In particular, we will investigate the involvment of P2X7 receptors and small conductance Ca2+-activated K-t- (SK) channels in PDGFRa+ cells in mediating responses to ATP and will examine purine-mediated Ca2+ desensitization mechanisms in colonic smooth muscle.
In Aim 3 we will investigate how neuronal release, degradation and action of extracellular purine nucleotides and metabolites are affected in colitis. We will conduct our studies on colons from human and non-human primates, in mice with specific gene deletions, in reporter strains of mice with constitutive expression of green fluorescence proteins, and in animal models of colitis. We will examine constitutive and evoked overflow and extracellular biotransformation of purines using enhanced high performance liquid chromatography techniques along with immunohistochemistry, protein biochemistry, fluorescence-activated cell sorting, electrophysiology, and functional approaches to better understand mechanisms of purinergic signaling in the gut. This research has the potential to advance new concepts in regulatory purine-mediated mechanisms in the distal Gl tract.

Public Health Relevance

Many Gl symptoms and motility disorders are linked to defects in the neural control of the Gl system. Inflammatory bowel disease (IBD) in particular (e.g. Crohn's disease and ulcerative colitis) accounts for a significant proportion of Gl disease and presents a significant economic healthcare burden in the U.S. and the developing worid. This project will greatly enhance knowledge of purinergic signaling in the gut and will likelv suggest novel strategies for preventing or correcting Gl diseases including IBD

National Institute of Health (NIH)
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Research Program Projects (P01)
Project #
Application #
Study Section
Special Emphasis Panel (ZDK1-GRB-6 (J3))
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Nevada Reno
United States
Zip Code
Sanders, Kenton M; Salter, Anna K; Hennig, Grant W et al. (2014) Responses to enteric motor neurons in the gastric fundus of mice with reduced intramuscular interstitial cells of cajal. J Neurogastroenterol Motil 20:171-84
Zheng, Haifeng; Park, Kyung Sik; Koh, Sang Don et al. (2014) Expression and function of a T-type Ca2+ conductance in interstitial cells of Cajal of the murine small intestine. Am J Physiol Cell Physiol 306:C705-13
McCann, Conor J; Hwang, Sung-Jin; Hennig, Grant W et al. (2014) Bone Marrow Derived Kit-positive Cells Colonize the Gut but Fail to Restore Pacemaker Function in Intestines Lacking Interstitial Cells of Cajal. J Neurogastroenterol Motil 20:326-37
Durnin, Leonie; Hwang, Sung Jin; Kurahashi, Masaaki et al. (2014) Uridine adenosine tetraphosphate is a novel neurogenic P2Y1 receptor activator in the gut. Proc Natl Acad Sci U S A 111:15821-6
Okamoto, T; Barton, M J; Hennig, G W et al. (2014) Extensive projections of myenteric serotonergic neurons suggest they comprise the central processing unit in the colon. Neurogastroenterol Motil 26:556-70
Drumm, Bernard T; Koh, Sang Don; Andersson, Karl-Erik et al. (2014) Calcium signalling in Cajal-like interstitial cells of the lower urinary tract. Nat Rev Urol 11:555-64
Mutafova-Yambolieva, Violeta N; Durnin, Leonie (2014) The purinergic neurotransmitter revisited: a single substance or multiple players? Pharmacol Ther 144:162-91
Sanders, Kenton M; Ward, Sean M; Koh, Sang Don (2014) Interstitial cells: regulators of smooth muscle function. Physiol Rev 94:859-907
Kurahashi, Masaaki; Nakano, Yasuko; Peri, Lauren E et al. (2013) A novel population of subepithelial platelet-derived growth factor receptor *-positive cells in the mouse and human colon. Am J Physiol Gastrointest Liver Physiol 304:G823-34
Keef, K D; Saxton, S N; McDowall, R A et al. (2013) Functional role of vasoactive intestinal polypeptide in inhibitory motor innervation in the mouse internal anal sphincter. J Physiol 591:1489-506

Showing the most recent 10 out of 309 publications