Project 2, "Mechanisms of Neurobehavioral Dysfunction from Developmental Nicotine,&Tobacco," will determine how early life environmental tobacco smoke (ETS) exposure impacts neuronal differentiation, neural circuit formation and behavioral development resulting in persisting cognitive and emotional dysfunction. Neuronal and behavioral mechanisms will be studied in experiments tracing the progress from the incipient exposures to nicotine and tobacco during critical stages of cellular and organismal development, to the epigenetic and synaptic mechanisms that underiie behavioral dysfunction. Using a well characterized rat model for neurodevelopment, tobacco and nicotine will be administered by minipumps implanted subcutaneously to enable for continuous exposure that avoids the known stressors for rats that accompany direct smoke exposure. Cause and effect relationships between impacts on attention and memory as well as emotional function will be determined. We will compare the effects of tobacco and nicotine ranging from higher exposures modeling active maternal smoking to lower exposures characteristic of ETS. This project will provide the mechanistic link translating the epigenetic impacts of ETS to the cognitive impairments seen in children after developmental ETS exposure. Synaptic mechanisms underiying these behavioral effects will be determined with assessment of acetylcholine, dopamine, norepinephrine and serotonin systems known to be affected by nicotine exposures associated with active smoking during pregnancy. Cellular phenotypes of ETS and nicotine exposure will be determined in three validated in vitro models of neurodifferentiation, nerve growth factor-induced differentiation of rat PC12 ceils, differentiation of rat embryonic stem ceils to neurons and glia, and transdifferentiated human induced neurons. The investigation of epigenetic and neurochemical alterations from ETS will lead to studies of rescue and therapeutic treatments to avoid or reverse developmental ETS-induced cognitive and emotional dysfunction. This project will provide critical mechanistic translation between the molecular epigenetic studies of Project 3 and the clinical studies of ADHD in Project 1 to help children avoid lifelong impairment from developmental ETS exposure.

Public Health Relevance

These studies will help determine behavioral, neural and epigenetic mechanisms for nicotine and ETS induced cognitive impairments. Specific therapeutic treatments will be investigated, and antioxidant and methyl donor rescue treatments will be tested to reverse or avoid the cognitive impairments from developmental ETS exposure.

Agency
National Institute of Health (NIH)
Institute
National Institute of Environmental Health Sciences (NIEHS)
Type
Research Program Projects (P01)
Project #
5P01ES022831-02
Application #
8672640
Study Section
Special Emphasis Panel (ZES1-LKB-K)
Project Start
Project End
Budget Start
2014-06-01
Budget End
2015-05-31
Support Year
2
Fiscal Year
2014
Total Cost
$269,148
Indirect Cost
$97,716
Name
Duke University
Department
Type
DUNS #
044387793
City
Durham
State
NC
Country
United States
Zip Code
27705
King, Katherine E; Kane, Jennifer B; Scarbrough, Peter et al. (2016) Neighborhood and Family Environment of Expectant Mothers May Influence Prenatal Programming of Adult Cancer Risk: Discussion and an Illustrative DNA Methylation Example. Biodemography Soc Biol 62:87-104
Fuemmeler, Bernard F; Wang, Lin; Iversen, Edwin S et al. (2016) Association between Prepregnancy Body Mass Index and Gestational Weight Gain with Size, Tempo, and Velocity of Infant Growth: Analysis of the Newborn Epigenetic Study Cohort. Child Obes 12:210-8
Slotkin, Theodore A; Stadler, Ashley; Skavicus, Samantha et al. (2016) Adolescents and adults differ in the immediate and long-term impact of nicotine administration and withdrawal on cardiac norepinephrine. Brain Res Bull 122:71-5
Fuemmeler, Bernard F; Lee, Chien-Ti; Soubry, Adelheid et al. (2016) DNA Methylation of Regulatory Regions of Imprinted Genes at Birth and Its Relation to Infant Temperament. Genet Epigenet 8:59-67
Slotkin, Theodore A; Skavicus, Samantha; Card, Jennifer et al. (2016) Diverse neurotoxicants target the differentiation of embryonic neural stem cells into neuronal and glial phenotypes. Toxicology 372:42-51
Slotkin, Theodore A; Skavicus, Samantha; Card, Jennifer et al. (2015) Developmental Neurotoxicity of Tobacco Smoke Directed Toward Cholinergic and Serotonergic Systems: More Than Just Nicotine. Toxicol Sci 147:178-89
Murphy, Susan K; Erginer, Erin; Huang, Zhiqing et al. (2015) Genotype-Epigenotype Interaction at the IGF2 DMR. Genes (Basel) 6:777-89
Levin, Edward D (2015) Learning about cognition risk with the radial-arm maze in the developmental neurotoxicology battery. Neurotoxicol Teratol 52:88-92
Slotkin, Theodore A; Skavicus, Samantha; Card, Jennifer et al. (2015) Amelioration strategies fail to prevent tobacco smoke effects on neurodifferentiation: Nicotinic receptor blockade, antioxidants, methyl donors. Toxicology 333:63-75
Nye, Monica D; Hoyo, Cathrine; Murphy, Susan K (2015) In vitro lead exposure changes DNA methylation and expression of IGF2 and PEG1/MEST. Toxicol In Vitro 29:544-50

Showing the most recent 10 out of 17 publications