This interdisciplinary program project grant involves four highly collaborative projects and three Core elements involving faculty from five departments of the Schools of Pharmacy and Medicine of the University of Washington and collaboration with two other institutions. Collectively, it is focused (i) on understanding molecular mechanisms that complicate prediction of drug-drug interactions from in vitro data, and (ii) developing methods to allow the prediction of such events from in vitro experiments before humans are exposed to dangerous combinations of drugs in vivo. Project 1 will define the influence of genotype on the magnitude of inhibitory and inductive drug-drug interactions involving the oral anticoagulant drug, warfarin. This information can guide management of warfarin drug interactions in carriers of common polymorphisms within genes controlling the pharmacokinetics and pharmacodynamics of the drug. Interactions involving alkylamine drugs are often complicated by time-dependent inhibition of P450s through formation of a metabolite-intermediate (Ml) complex. Project 2 is pioneering the concept that formation of secondary hydroxylamine metabolites of alkylamine drugs are the pivotal step in Ml complex formation in vitro and in vivo. Extrapolating from in vitro kinetic data to the in vivo situation is further complicated by the phenomenon of P450 allosterism. Project 3 is studying the mechanistic underpinning for activation kinetics among human P450s and will also test if such allosteric behavior occurs in vivo. Finally, Project 4 addresses the quantitative prediction of P-glycoprotein based drug-drug interactions at the human blood-brain barrier These studies are possible because of novel and innovative imaging methodologies developed by this project that will be used combination with cell model systems and rodent studies.

National Institute of Health (NIH)
National Institute of General Medical Sciences (NIGMS)
Research Program Projects (P01)
Project #
Application #
Study Section
Special Emphasis Panel (ZGM1-PPBC-6 (PH))
Program Officer
Okita, Richard T
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Washington
Schools of Pharmacy
United States
Zip Code
Marsillach, Judit; Suzuki, Stephanie M; Richter, Rebecca J et al. (2014) Human valacyclovir hydrolase/biphenyl hydrolase-like protein is a highly efficient homocysteine thiolactonase. PLoS One 9:e110054
Lavado, Ramon; Li, Jiwen; Rimoldi, John M et al. (2014) Evaluation of the stereoselective biotransformation of permethrin in human liver microsomes: contributions of cytochrome P450 monooxygenases to the formation of estrogenic metabolites. Toxicol Lett 226:192-7
Barr, John T; Choughule, Kanika V; Nepal, Sahadev et al. (2014) Why do most human liver cytosol preparations lack xanthine oxidase activity? Drug Metab Dispos 42:695-9
Sager, J E; Lutz, J D; Foti, R S et al. (2014) Fluoxetine- and norfluoxetine-mediated complex drug-drug interactions: in vitro to in vivo correlation of effects on CYP2D6, CYP2C19, and CYP3A4. Clin Pharmacol Ther 95:653-62
Haque, Jamil A; McDonald, Matthew G; Kulman, John D et al. (2014) A cellular system for quantitation of vitamin K cycle activity: structure-activity effects on vitamin K antagonism by warfarin metabolites. Blood 123:582-9
Hardy, Klarissa D; Wahlin, Michelle D; Papageorgiou, Ioannis et al. (2014) Studies on the role of metabolic activation in tyrosine kinase inhibitor-dependent hepatotoxicity: induction of CYP3A4 enhances the cytotoxicity of lapatinib in HepaRG cells. Drug Metab Dispos 42:162-71
Kaspera, RĂ¼diger; Kirby, Brian J; Sahele, Tariku et al. (2014) Investigating the contribution of CYP2J2 to ritonavir metabolism in vitro and in vivo. Biochem Pharmacol 91:109-18
Caudle, K E; Rettie, A E; Whirl-Carrillo, M et al. (2014) Clinical pharmacogenetics implementation consortium guidelines for CYP2C9 and HLA-B genotypes and phenytoin dosing. Clin Pharmacol Ther 96:542-8
Hsiao, Peng; Unadkat, Jashvant D (2014) Predicting the outer boundaries of P-glycoprotein (P-gp)-based drug interactions at the human blood-brain barrier based on rat studies. Mol Pharm 11:436-44
Markova, S M; De Marco, T; Bendjilali, N et al. (2013) Association of CYP2C9*2 with bosentan-induced liver injury. Clin Pharmacol Ther 94:678-86

Showing the most recent 10 out of 345 publications