The specific aim of Core A is to provide administrative support for the Program Project entitled Making Sense of Voltage Sensors. The Program consists of three Research Projects and three Core Projects (including Core A). Total Program staffing includes four principal investigators, a senior investigator, and eight postdoctoral scholars located variously at UC Irvine (2 departments), the University of Pennsylvania, and the NIST Center for Neutron Research. Core A provides the administrative resources necessary for creating a coordination and support center for the entire Program. It will support 5% of the effort for the Program Director and a full-time administrative assistant (AA), who will assist the Director in the overall mangement of the Program. The AA will in addition provide general adminstrative support to the Project Pis for travel related to Program management and for the preparation and submission of reports, budgets, and publications. Core A provides resources for Project Pis to attend three PI conferences each year, which will rotate between the three performance sites. Resources are also requested for travel for Program Director to make regular oversight visits to the NIST Center for Neutron Research and the University of Pennsylvania.

Public Health Relevance

Core A is the administrative core for a Program Project that investigates how ion channels gate the flow of ions across nerve, muscle, and cardiac cells in response to changes in voltage across their cell membranes. These voltage changes, called action potentials, are the means by which nerve, muscle, and cardiac cells communicate with each other. Many neuromuscular and cardiac diseases arise from defects in the way action potentials are produced. Results from this Program will help us understand the origin of such diseases.

National Institute of Health (NIH)
National Institute of General Medical Sciences (NIGMS)
Research Program Projects (P01)
Project #
Application #
Study Section
Special Emphasis Panel (ZRG1-BCMB-N)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of California Irvine
United States
Zip Code
Cymer, Florian; von Heijne, Gunnar; White, Stephen H (2015) Mechanisms of integral membrane protein insertion and folding. J Mol Biol 427:999-1022
Andersson, Magnus; Mattle, Daniel; Sitsel, Oleg et al. (2014) Copper-transporting P-type ATPases use a unique ion-release pathway. Nat Struct Mol Biol 21:43-8
Ulmschneider, Martin B; Ulmschneider, Jakob P; Schiller, Nina et al. (2014) Spontaneous transmembrane helix insertion thermodynamically mimics translocon-guided insertion. Nat Commun 5:4863
Tronin, Andrey Y; Nordgren, C Erik; Strzalka, Joseph W et al. (2014) Direct evidence of conformational changes associated with voltage gating in a voltage sensor protein by time-resolved X-ray/neutron interferometry. Langmuir 30:4784-96
Jiang, Xiaoxu; Villafuerte, Maria Katerina R; Andersson, Magnus et al. (2014) Galactoside-binding site in LacY. Biochemistry 53:1536-43
Madrona, Yarrow; Hollingsworth, Scott A; Tripathi, Sarvind et al. (2014) Crystal structure of cindoxin, the P450cin redox partner. Biochemistry 53:1435-46
Andersson, Magnus; Ulmschneider, Jakob P; Ulmschneider, Martin B et al. (2013) Conformational states of melittin at a bilayer interface. Biophys J 104:L12-4
Tronin, A; Chen, C-H; Gupta, S et al. (2013) Structural changes in single membranes in response to an applied transmembrane electric potential revealed by time-resolved neutron/X-ray interferometry. Chem Phys 422:
Reichow, Steve L; Clemens, Daniel M; Freites, J Alfredo et al. (2013) Allosteric mechanism of water-channel gating by Ca2+-calmodulin. Nat Struct Mol Biol 20:1085-92
Kyrychenko, Alexander; Tobias, Douglas J; Ladokhin, Alexey S (2013) Validation of depth-dependent fluorescence quenching in membranes by molecular dynamics simulation of tryptophan octyl ester in POPC bilayer. J Phys Chem B 117:4770-8

Showing the most recent 10 out of 28 publications