Technology Development The focus of this renewal application is on the development of technologies that will enable the study of the human genome and the mechanisms underlying human disease at a substantially-reduced cost. Methods to analyze human samples must be extremely sensitive in order to: 1) detect low abundance biomolecules;and 2) be informative using small sample volumes. However, current genomic and proteomic methods vary widely in their suitability for analyzing human samples. For example, genomic methods such as microarrays and next generation sequencing have high sensitivity, but are limited in their quantitative value because ofthe biases of DNA amplification strategies that are required to generate detectable signals. In contrast, current proteomic methods such as ELISA assays simply lack sensitivity altogether, leaving the low abundance proteins that may be informative biomarkers undetected. In this second tier of the proposal. Technology Development, we are focused on developing technologies that can detect nucleic acids and proteins not only with high accuracy and sensitivity, but also with a minimum of time and expense in order to facilitate their translation to clinical medicine. Such technologies will equip biomedical researchers with better tools to investigate the human disease process, and enable the use of less invasive sources of diagnostic material, such as sweat, saliva, or breath. These technologies were in the innovation phase during the previous funding period and met desired milestones. Current development will be directed toward further strengthening the tools and demonstrating their improvement over existing technologies. We will develop a method based on modified atomic force microscopy for the label-free nanomechanical quantitation of nucleic acids, and two methods that integrate microfluidics and electrical impedance sensing for the high-throughput digital detection of proteins from minute samples. Once proof-of-principle has been established, these technologies will be primed for export and application to specific clinical problems.

National Institute of Health (NIH)
National Human Genome Research Institute (NHGRI)
Research Program Projects (P01)
Project #
Application #
Study Section
Special Emphasis Panel (ZHG1-HGR-N)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Stanford University
United States
Zip Code
Hopmans, Erik S; Natsoulis, Georges; Bell, John M et al. (2014) A programmable method for massively parallel targeted sequencing. Nucleic Acids Res 42:e88
Schlecht, Ulrich; Suresh, Sundari; Xu, Weihong et al. (2014) A functional screen for copper homeostasis genes identifies a pharmacologically tractable cellular system. BMC Genomics 15:263
Jensen, Michael; Roberts, Lester; Johnson, Andrew et al. (2014) Next generation 1536-well oligonucleotide synthesizer with on-the-fly dispense. J Biotechnol 171:76-81
Fu, Glenn K; Xu, Weihong; Wilhelmy, Julie et al. (2014) Molecular indexing enables quantitative targeted RNA sequencing and reveals poor efficiencies in standard library preparations. Proc Natl Acad Sci U S A 111:1891-6
Horecka, Joe; Chu, Angela M; Davis, Ronald W (2014) IpO: plasmids and methods for simplified, PCR-based DNA transplant in yeast. Yeast 31:185-93
Grimes, Susan M; Ji, Hanlee P (2014) MendeLIMS: a web-based laboratory information management system for clinical genome sequencing. BMC Bioinformatics 15:290
O'Brien, Robert V; Davis, Ronald W; Khosla, Chaitan et al. (2014) Computational identification and analysis of orphan assembly-line polyketide synthases. J Antibiot (Tokyo) 67:89-97
Miotke, Laura; Lau, Billy T; Rumma, Rowza T et al. (2014) High sensitivity detection and quantitation of DNA copy number and single nucleotide variants with single color droplet digital PCR. Anal Chem 86:2618-24
Actis, Paolo; Maalouf, Michelle M; Kim, Hyunsung John et al. (2014) Compartmental genomics in living cells revealed by single-cell nanobiopsy. ACS Nano 8:546-53
Esfandyarpour, Rahim; Javanmard, Mehdi; Koochak, Zahra et al. (2014) Nanoelectronic impedance detection of target cells. Biotechnol Bioeng 111:1161-9

Showing the most recent 10 out of 131 publications