Tolerance of kidney allografts has been achieved in non-human primates (NHPs) and in humans using a combination of non-myeloablative conditioning and donor bone marrow transplantation (DMBT) that results in transient donor chimerism. However, until now, mixed-chimerism protocols that achieve long-term tolerance of kidney allografts in NHPs have consistently failed to induce tolerance in recipients of heart or lung allografts. It is well known that some organs, such as kidney and liver, are tolerance-prone while others, such as heart and lung, are tolerance-resistant. It has been hypothesized that only protocols that result in durable donor chimerism would be able to achieve tolerance in resistant heart and lung allografts. Remarkably, however, the results obtained during our current funding cycle demonstrate, for the first time, that tolerance of heart allografts can be achieved in NHPs via transient mixed-chimerism as long as host regulatory mechanisms are enhanced in the host. Indeed, our results suggest that it is the ability of a mixed-chimerism protocol to augment or expand regulatory T cells (Tregs), rather than its durability, that determines its ability to induc tolerance to resistant organs. Thus, the unifying goal of this program project is to combine mixed chimerism with novel strategies designed to amplify the contributions of Tregs in order develop a clinical tolerance protocol that can be rapidly translated to human recipients of heart and lung allografts. The Program will be organized in such a way that early advances in Project 3 (examining molecular pathways required to stabilize and promote Treg function in mice), will inform and refine the aims of Project 1 (optimizing mixed chimerism to induce NHP heart allograft tolerance) and Project 2 (optimizing mixed chimerism to induce NHP lung allograft tolerance). The availability of tissue and blood samples for longitudinal analyses will aid the study of immune mechanisms by assessing the consequences of T and B cell regulation, T and B cell memory and pro-inflammatory cytokines on graft survival (Cores A & B). The diverse yet complementary models and approaches that will be used to achieve heart and lung tolerance is a unique strength of this program project. Collaboration between all projects will be greatly enhanced by the fact that most all the investigators have worked together closely for many years. Together, our studies should result in a better understanding of tolerance and contribute to the successful application of tolerance to the full spectrum of deceased donor organ and tissue transplantation.

Public Health Relevance

Achieving long-term survival of organ transplants without the need for chronic immunosuppression will provide transplant recipients with a healthier and longer life. These studies will explore ways to eliminate the need for chronic immunosuppressive drugs in patients undergoing heart and lung transplantation.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Program Projects (P01)
Project #
5P01HL018646-37
Application #
8966017
Study Section
Heart, Lung, and Blood Initial Review Group (HLBP)
Program Officer
Schwartz, Lisa
Project Start
1999-03-01
Project End
2019-10-31
Budget Start
2015-11-01
Budget End
2016-10-31
Support Year
37
Fiscal Year
2016
Total Cost
$2,138,200
Indirect Cost
$793,962
Name
Massachusetts General Hospital
Department
Type
DUNS #
073130411
City
Boston
State
MA
Country
United States
Zip Code
02114
Newton, Ryan H; Shrestha, Sharad; Sullivan, Jenna M et al. (2018) Maintenance of CD4 T cell fitness through regulation of Foxo1. Nat Immunol 19:838-848
Hotta, Kiyohiko; Oura, Tetsu; Dehnadi, Abbas et al. (2018) Long-term Nonhuman Primate Renal Allograft Survival Without Ongoing Immunosuppression in Recipients of Delayed Donor Bone Marrow Transplantation. Transplantation 102:e128-e136
Robinson, Kortney A; Orent, William; Madsen, Joren C et al. (2018) Maintaining T cell tolerance of alloantigens: Lessons from animal studies. Am J Transplant 18:1843-1856
Sasaki, Hajime; Oura, Tetsu; Spitzer, Thomas R et al. (2018) Preclinical and clinical studies for transplant tolerance via the mixed chimerism approach. Hum Immunol 79:258-265
Tanimine, Naoki; Turka, Laurence A; Priyadharshini, Bhavana (2018) Navigating T-Cell Immunometabolism in Transplantation. Transplantation 102:230-239
Michel, S G; Madariaga, M L L; LaMuraglia 2nd, G M et al. (2018) The effects of brain death and ischemia on tolerance induction are organ-specific. Am J Transplant 18:1262-1269
Smith, R N; Adam, B A; Rosales, I A et al. (2018) RNA expression profiling of renal allografts in a nonhuman primate identifies variation in NK and endothelial gene expression. Am J Transplant 18:1340-1350
Chatterjee, Debanjana; Moore, Carolina; Gao, Baoshan et al. (2018) Prevalence of polyreactive innate clones among graft--infiltrating B cells in human cardiac allograft vasculopathy. J Heart Lung Transplant 37:385-393
Gonzalez-Nolasco, Bruno; Wang, Mengchuan; Prunevieille, Aurore et al. (2018) Emerging role of exosomes in allorecognition and allograft rejection. Curr Opin Organ Transplant 23:22-27
Smith, R N; Matsunami, M; Adam, B A et al. (2018) RNA expression profiling of nonhuman primate renal allograft rejection identifies tolerance. Am J Transplant 18:1328-1339

Showing the most recent 10 out of 305 publications