Inflammation is a key component of cardiovascular diseases and related pathophysiological processes, including atherosclerosis, autoimmunity, allograft rejection, the diabetes-metabolic syndrome, hemostasis and thrombosis, and wound healing. The vascular endothelium plays an active and vital role in regulating inflammatory responses and in maintaining homeostasis of the innate and adaptive immune systems. Two basic functions of the endothelium, particularly important in the context of inflammation, are the regulation of leukocyte recruitment and vascular permeability, both of which involve coordinated interactions of cell-cell adhesion/junctional molecules and the actin cytoskeleton. Dysregulation of these endothelial functions promotes inflammatory disease processes. Since its inception 30 years ago, this Program Project has combined cell and molecular biological, biochemical, morphological, molecular genetic, and experimental pathological approaches in in vitro cell culture and in vivo animal models to gain new insights into the active role of vascular endothelium in inflammation. In this amended renewal application, Project 1 will study the contribution of endothelial CD47 and its ligands Signal Regulatory Proteins and thrombospondin, as well as leukocyte CD47 dependent regulation of VLA-4 and LFA-1 integrin adhesion, in the recruitment of inflammatory mononuclear leukocytes into sites of chronic inflammation. Project 2 will examine the mechanisms by which endothelium selectively regulates recruitment of the IL17- and IFN-y producing subsets of T lymphocytes into tissues. Project 3 will determine how endothelial barrier function and leukocyte integrin-mediated adhesion may be selectively regulated by the subcellular compartmentalization of signaling by the intracellular mediator cAMP and its effectors molecules. In support of the scientific goals of these projects. Core A (Cell Biology) will provide well characterized vascular cell cultures (human, mouse, wildtype and mutant);monoclonal hybridoma cells and leukocyte cell lines;Core B (Morphology) will assist in immunohistochemistry and histopathology of mouse tissues;Core C (Physiological and Molecular Imaging) will support intravital and confocal microscopy studies as well as in vitro leukocyte-endothelial adhesion studies under defined flow conditions. Core D will provide administrative, secretarial and laboratory management support for the Program. The results of these proposed studies should yield valuable new insights into how vascular endothelial cells actively participate in the regulation of the inflammatory process, which is central to so many pathophysiological conditions that affect the heart and blood vessels (e.g., heart attacks and strokes), as well as other organs and tissues of the body. These mechanistic insights may help identify novel therapeutic targets for the treatment of a broad spectrum of inflammatory diseases.

National Institute of Health (NIH)
National Heart, Lung, and Blood Institute (NHLBI)
Research Program Projects (P01)
Project #
Application #
Study Section
Heart, Lung, and Blood Initial Review Group (HLBP)
Program Officer
Hasan, Ahmed AK
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Brigham and Women's Hospital
United States
Zip Code
Brown, Jonathan D; Lin, Charles Y; Duan, Qiong et al. (2014) NF-?B directs dynamic super enhancer formation in inflammation and atherogenesis. Mol Cell 56:219-31
Luscinskas, Francis W; Imhof, Beat A (2014) Introduction for the special issue on new paradigms in leukocyte trafficking, lessons for therapeutics. Semin Immunopathol 36:133-6
Leick, Marion; Azcutia, Veronica; Newton, Gail et al. (2014) Leukocyte recruitment in inflammation: basic concepts and new mechanistic insights based on new models and microscopic imaging technologies. Cell Tissue Res 355:647-56
Massaad, Michel J; Oyoshi, Michiko K; Kane, Jennifer et al. (2014) Binding of WIP to actin is essential for T cell actin cytoskeleton integrity and tissue homing. Mol Cell Biol 34:4343-54
Mayadas, Tanya N; Cullere, Xavier; Lowell, Clifford A (2014) The multifaceted functions of neutrophils. Annu Rev Pathol 9:181-218
Venkatesh, Deepak; Ernandez, Thomas; Rosetti, Florencia et al. (2013) Endothelial TNF receptor 2 induces IRF1 transcription factor-dependent interferon-? autocrine signaling to promote monocyte recruitment. Immunity 38:1025-37
Azcutia, Veronica; Routledge, Matthew; Williams, Marcie R et al. (2013) CD47 plays a critical role in T-cell recruitment by regulation of LFA-1 and VLA-4 integrin adhesive functions. Mol Biol Cell 24:3358-68
Griffin, Gabriel K; Lichtman, Andrew H (2013) Two sides to every proinflammatory coin: new insights into the role of dendritic cells in the regulation of T-cell driven autoimmune myocarditis. Circulation 127:2257-60
Martinelli, Roberta; Newton, Gail; Carman, Christopher V et al. (2013) Novel role of CD47 in rat microvascular endothelium: signaling and regulation of T-cell transendothelial migration. Arterioscler Thromb Vasc Biol 33:2566-76
Alcaide, Pilar; Maganto-Garcia, Elena; Newton, Gail et al. (2012) Difference in Th1 and Th17 lymphocyte adhesion to endothelium. J Immunol 188:1421-30

Showing the most recent 10 out of 252 publications