Obstructive sleep apnea (OSA) is a common sleep disorder that is characterized by frequent arousals from sleep caused by the collapse of the upper ainway and resulting hypercarbia/hypoxemia. Frequent arousals from sleep interfere with the architecture of normal sleep, reduce deep sleep, and impair the restorative/ cognitive benefits of sleep. Despite the importance of preventing arousals from sleep in order to improve sleep quality for millions of Americans with OSA, very little is known about the neural control mechanisms that mediate arousals during OSA. Recent work using anatomical methods suggests that the brainstem glutamatergic neurons of the parabrachial complex (PB/PC), which receive visceral and respiratory input, are important for arousal during OSA via their projections to the basal forebrain (BF), a region containing cortically projecting &wakefulness promoting neurons. However, these findings have not yet been complemented by an essential element, the recording of neurons in this circuit. This project addresses this need by using tetrode/multiple single unit recordings of PB/PC and BF neurons during natural sleep cycles and during arousals from both slow wave sleep (non-REM sleep) and REM sleep provoked by hypercarbia, thus mimicking the stimuli from OSA. To model the arousals of sleep apnea, rats will be exposed to 10% carbon dioxide to awaken them from sleep. We hypothesize that the cortical activation seen in the arousals of sleep apnea is mediated by the projection from PB/PC to BF. Since PB neurons receive input about levels of carbon dioxide and respiratory effort, we predict that PB/PC neurons will exhibit an increase in discharge activity that precedes cortical activation when the arousals from sleep are produced by carbon dioxide, but not when the arousals are spontaneous, or induced by acoustic stimulation. Reversible muscimol inactivation of PB/PC will further test the role of PB/PC in arousals. We predict that all types of arousals from sleep &the accompanying cortical activation will correlate with the elevated discharge of BF wakefulness promoting neurons. This project's precise information on the timing of neuronal activation relative to hypercarbia will complement and enhance the other projects of this program project grant.

Public Health Relevance

Sleep, an essential part of human life, is needed for optimal health &performance. Millions of (Americans suffer from disorders, such as sleep apnea, in which frequent arousals from sleep lead to excessive daytime sleepiness &cognitive impairments. This proposal investigates brain mechanisms underiying arousals from sleep in order to provide a rational basis for the development of therapies to reduce arousals from sleep.

National Institute of Health (NIH)
National Heart, Lung, and Blood Institute (NHLBI)
Research Program Projects (P01)
Project #
Application #
Study Section
Heart, Lung, and Blood Initial Review Group (HLBP)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Beth Israel Deaconess Medical Center
United States
Zip Code
Scammell, Thomas E; Arrigoni, Elda; Lipton, Jonathan O (2017) Neural Circuitry of Wakefulness and Sleep. Neuron 93:747-765
Yang, Chun; McKenna, James T; Brown, Ritchie E (2017) Intrinsic membrane properties and cholinergic modulation of mouse basal forebrain glutamatergic neurons in vitro. Neuroscience 352:249-261
Landry, Shane A; Joosten, Simon A; Sands, Scott A et al. (2017) Response to a combination of oxygen and a hypnotic as treatment for obstructive sleep apnoea is predicted by a patient's therapeutic CPAP requirement. Respirology 22:1219-1224
Marques, Melania; Genta, Pedro R; Sands, Scott A et al. (2017) Effect of Sleeping Position on Upper Airway Patency in Obstructive Sleep Apnea Is Determined by the Pharyngeal Structure Causing Collapse. Sleep 40:
Azarbarzin, Ali; Sands, Scott A; Taranto-Montemurro, Luigi et al. (2017) Estimation of Pharyngeal Collapsibility During Sleep by Peak Inspiratory Airflow. Sleep 40:
Kroeger, Daniel; Ferrari, Loris L; Petit, Gaetan et al. (2017) Cholinergic, Glutamatergic, and GABAergic Neurons of the Pedunculopontine Tegmental Nucleus Have Distinct Effects on Sleep/Wake Behavior in Mice. J Neurosci 37:1352-1366
Rukhadze, Irma; Carballo, Nancy J; Bandaru, Sathyajit S et al. (2017) Catecholaminergic A1/C1 neurons contribute to the maintenance of upper airway muscle tone but may not participate in NREM sleep-related depression of these muscles. Respir Physiol Neurobiol 244:41-50
Kim, Bowon; Kocsis, Bernat; Hwang, Eunjin et al. (2017) Differential modulation of global and local neural oscillations in REM sleep by homeostatic sleep regulation. Proc Natl Acad Sci U S A 114:E1727-E1736
Kaur, Satvinder; Wang, Joshua L; Ferrari, Loris et al. (2017) A Genetically Defined Circuit for Arousal from Sleep during Hypercapnia. Neuron 96:1153-1167.e5
Geerling, Joel C; Yokota, Shigefumi; Rukhadze, Irma et al. (2017) K├Âlliker-Fuse GABAergic and glutamatergic neurons project to distinct targets. J Comp Neurol 525:1844-1860

Showing the most recent 10 out of 173 publications