Novel therapies are needed to'address the vascular endothelial cell (EC) barrier disruption which occurs in the context of inflammatory diseases such as acute lung injury (ALI). We have previously demonstrated the potent barrier-enhancing effects of both sphingosine 1-phosphate (SIP) and a structurally similar compound, FTY720 (FTY), in models of ALI. Despite its impressive potential, S1P is an endogenous compound that produces a myriad of potentially harmful effects which will limit its usefulness in patients. Therefore we have focused on FTY, which is currently being evaluated in Phase III clinical trials for other indications and may soon be a potential therapeutic option for ALI. Our prior studies demonstrate that FTY potently enhances EC barrier function through a novel and poorly understood mechanistic pathway that differs from SIP. However, FTY has immunosuppressive properties that may limit its therapeutic utility in patients with ALI. As a result, we have generated novel analogues of FTY to mechanistically explore these barrier-regulatory pathways and to identify more optimal therapeutic compounds. Our exciting preliminary data indicate that the FTY720 (S)-phosphonate (fTyS) analogue has superior efficacy in ALI models and maintains SIPRI receptor levels unlike other agonists which induce its ubiquitination and degradation. With this background, we propose the following specific aims. SA #1 will rigorously characterize the differential effects of the promising fTyS analogue in comparison with FTY and SIP on SIPRI expression, activation, ubiquitination, and degradation in vitro. SA #2 will mechanistically characterize in vitro fTyS in comparison with FTY and SIP for their relative effects on multiple aspects of EC barrier function in vitro, including intracellular signaling and junctional complex formation. SA #3 will extend these studies in vivo by defining pharmacologic properties of fTyS in mice and characterizing its effects on SIPRI expression and function in vivo. The relative effectiveness of fTyS, SIP, and FTY to attenuate lung injury will be compared in both short term (LPS) and long term (bleomycin) mouse ALI models to assess the potential use of these agents for prolonged therapy. We expect these studies to facilitate the development of targeted therapies to reduce vascular leak in ALI.

Public Health Relevance

The Acute Lung Injury/Acute Respiratory Distress Syndrome (ALI/ARDS) is a devastating consequence of systemic inflammatory conditions (such as sepsis) that afflicts an estimated 200,000 people a year in the US with 75,000 deaths. No specific therapy is available to target the underlying mechanistic causes of this syndrome. This proposal seeks to evaluate the potential therapeutic effectiveness of novel FTY720 analogues in models of this disease.

National Institute of Health (NIH)
National Heart, Lung, and Blood Institute (NHLBI)
Research Program Projects (P01)
Project #
Application #
Study Section
Heart, Lung, and Blood Initial Review Group (HLBP)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Illinois at Chicago
United States
Zip Code
Huang, Long Shuang; Natarajan, Viswanathan (2015) Sphingolipids in pulmonary fibrosis. Adv Biol Regul 57:55-63
Ni, Xiuqin; Epshtein, Yulia; Chen, Weiguo et al. (2014) Interaction of integrin ?4 with S1P receptors in S1P- and HGF-induced endothelial barrier enhancement. J Cell Biochem 115:1187-95
Wolfson, Rachel K; Mapes, Brandon; Garcia, Joe G N (2014) Excessive mechanical stress increases HMGB1 expression in human lung microvascular endothelial cells via STAT3. Microvasc Res 92:50-5
Chen, Jiwang; Tang, Haiyang; Sysol, Justin R et al. (2014) The sphingosine kinase 1/sphingosine-1-phosphate pathway in pulmonary arterial hypertension. Am J Respir Crit Care Med 190:1032-43
Testai, Fernando D; Kilkus, John P; Berdyshev, Evgeny et al. (2014) Multiple sphingolipid abnormalities following cerebral microendothelial hypoxia. J Neurochem 131:530-40
Usatyuk, Peter V; Fu, Panfeng; Mohan, Vijay et al. (2014) Role of c-Met/phosphatidylinositol 3-kinase (PI3k)/Akt signaling in hepatocyte growth factor (HGF)-mediated lamellipodia formation, reactive oxygen species (ROS) generation, and motility of lung endothelial cells. J Biol Chem 289:13476-91
Adyshev, Djanybek M; Elangovan, Venkateswaran Ramamoorthi; Moldobaeva, Nurgul et al. (2014) Mechanical stress induces pre-B-cell colony-enhancing factor/NAMPT expression via epigenetic regulation by miR-374a and miR-568 in human lung endothelium. Am J Respir Cell Mol Biol 50:409-18
Huang, Long Shuang; Mathew, Biji; Li, Haiquan et al. (2014) The mitochondrial cardiolipin remodeling enzyme lysocardiolipin acyltransferase is a novel target in pulmonary fibrosis. Am J Respir Crit Care Med 189:1402-15
Wang, Lichun; Sammani, Saad; Moreno-Vinasco, Liliana et al. (2014) FTY720 (s)-phosphonate preserves sphingosine 1-phosphate receptor 1 expression and exhibits superior barrier protection to FTY720 in acute lung injury. Crit Care Med 42:e189-99
Makarenko, Vladislav V; Usatyuk, Peter V; Yuan, Guoxiang et al. (2014) Intermittent hypoxia-induced endothelial barrier dysfunction requires ROS-dependent MAP kinase activation. Am J Physiol Cell Physiol 306:C745-52

Showing the most recent 10 out of 25 publications