OVERVIEW OF GLYCAN ANALYSIS COMPONENT: Glycans play key roles in biological processes relevant to inflammation, such as cell-cell recognition, cell migration, and signal transduction. In order to understand glycan function in inflammation, it is essential to have an in-depth knowledge of glycan structural diversity in various cell types. Because enormous structural diversity exists in naturally occurring glycans, it has proven difficult to devise a universal protocol for glycan analysis. Moreover, sample complexity makes the isolation and purification of cell surface glycans a major methodological challenge. The analytical component of Core B will work within the framework of the Glycotechnology Core Resource at UCSD, a well-known center for providing specialized glycan analysis (glycotech.ucsd.edu). The Glycotechnology Core Resource was established in 1993 and since then has provided analytical support to a large number of investigators. Over the years, the Resource has developed skills to isolate, purify and structurally characterize polysaccharides or oligosaccharides from samples with limited amounts of analyte in the presence of a large background of complex biological contaminants. The state-of-the-art instrumentation coupled with many years of analytical experience will ensure that the analytic needs of the proposed Projects will be met. Besides carrying out custom analyses, the Resource has also trained graduate students, postdoctoral fellows, and principal investigators in glycan analytical techniques. Thus, the analytical group of Core B will also participate In the training program described in Core A, as well as perform glycan analyses for the individual Projects. Table 1 describes analytical techniques that will be used by the Projects.

National Institute of Health (NIH)
National Heart, Lung, and Blood Institute (NHLBI)
Research Program Projects (P01)
Project #
Application #
Study Section
Special Emphasis Panel (ZHL1-CSR-H)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of California San Diego
La Jolla
United States
Zip Code
Schommer, Nina N; Muto, Jun; Nizet, Victor et al. (2014) Hyaluronan breakdown contributes to immune defense against group A Streptococcus. J Biol Chem 289:26914-21
Lin, Ann E; Autran, Chloe A; Espanola, Sophia D et al. (2014) Human milk oligosaccharides protect bladder epithelial cells against uropathogenic Escherichia coli invasion and cytotoxicity. J Infect Dis 209:389-98
Mooij, H L; Cabrales, P; Bernelot Moens, S J et al. (2014) Loss of function in heparan sulfate elongation genes EXT1 and EXT 2 results in improved nitric oxide bioavailability and endothelial function. J Am Heart Assoc 3:e001274
Padler-Karavani, Vered; Hurtado-Ziola, Nancy; Chang, Yung-Chi et al. (2014) Rapid evolution of binding specificities and expression patterns of inhibitory CD33-related Siglecs in primates. FASEB J 28:1280-93
Muto, Jun; Morioka, Yasuhide; Yamasaki, Kenshi et al. (2014) Hyaluronan digestion controls DC migration from the skin. J Clin Invest 124:1309-19
Xu, Ding; Esko, Jeffrey D (2014) Demystifying heparan sulfate-protein interactions. Annu Rev Biochem 83:129-57
Thacker, Bryan E; Xu, Ding; Lawrence, Roger et al. (2014) Heparan sulfate 3-O-sulfation: a rare modification in search of a function. Matrix Biol 35:60-72
Chang, Yung-Chi; Olson, Joshua; Beasley, Federico C et al. (2014) Group B Streptococcus engages an inhibitory Siglec through sialic acid mimicry to blunt innate immune and inflammatory responses in vivo. PLoS Pathog 10:e1003846
van Sorge, Nina M; Cole, Jason N; Kuipers, Kirsten et al. (2014) The classical lancefield antigen of group a Streptococcus is a virulence determinant with implications for vaccine design. Cell Host Microbe 15:729-40
Zhang, Bing; Xiao, Wenyuan; Qiu, Hong et al. (2014) Heparan sulfate deficiency disrupts developmental angiogenesis and causes congenital diaphragmatic hernia. J Clin Invest 124:209-21

Showing the most recent 10 out of 21 publications