Administrative Core This proposed Program Project and its Administrative Core, both led by Dr. Bernardo Rudy, will be based at the NYU School of Medicine (NYUSoM). With state-of-the-art facilities and access to all essential resources, NYUSoM is an ideal location to carry out the proposed aims of this PPG, and the members of the PPG benefit from the larger NYU scientific environment, including the Neuroscience Institute and the Center for Neural Science. The Administrative Core will provide the important structures and communication plans to promote the fast sharing of data to promote cohesion and synergy, to promote collaborations among the PIs and scientific personnel, to ensure that the resources generated by the Molecular and Transgenic Core are shared and optimally used, to oversee the administrative and financial management of the PPG, and to coordinate the evaluation of research progress and future directions by an External Advisory Board. Through these activities, the Administrative Core will help to maximize productivity and accelerate scientific progress. It will also enable productive and synergistic research to improve our understanding of cortical interneurons, with added insight into their development, anatomy, circuit integration, and function.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Research Program Projects (P01)
Project #
2P01NS074972-06A1
Application #
9645479
Study Section
Special Emphasis Panel (ZNS1)
Project Start
Project End
Budget Start
2018-09-01
Budget End
2019-08-31
Support Year
6
Fiscal Year
2019
Total Cost
Indirect Cost
Name
New York University
Department
Type
DUNS #
121911077
City
New York
State
NY
Country
United States
Zip Code
10016
Wamsley, Brie; Fishell, Gord (2017) Genetic and activity-dependent mechanisms underlying interneuron diversity. Nat Rev Neurosci 18:299-309
Leffler, Abba E; Kuryatov, Alexander; Zebroski, Henry A et al. (2017) Discovery of peptide ligands through docking and virtual screening at nicotinic acetylcholine receptor homology models. Proc Natl Acad Sci U S A 114:E8100-E8109
Wilson, Daniel E; Smith, Gordon B; Jacob, Amanda L et al. (2017) GABAergic Neurons in Ferret Visual Cortex Participate in Functionally Specific Networks. Neuron 93:1058-1065.e4
Muñoz, William; Tremblay, Robin; Levenstein, Daniel et al. (2017) Layer-specific modulation of neocortical dendritic inhibition during active wakefulness. Science 355:954-959
Quattrocolo, Giulia; Fishell, Gord; Petros, Timothy J (2017) Heterotopic Transplantations Reveal Environmental Influences on Interneuron Diversity and Maturation. Cell Rep 21:721-731
Tuncdemir, Sebnem N; Wamsley, Brie; Stam, Floor J et al. (2016) Early Somatostatin Interneuron Connectivity Mediates the Maturation of Deep Layer Cortical Circuits. Neuron 89:521-35
Ma, Lei; Qiao, Qian; Tsai, Jin-Wu et al. (2016) Experience-dependent plasticity of dendritic spines of layer 2/3 pyramidal neurons in the mouse cortex. Dev Neurobiol 76:277-286
Qiao, Qian; Ma, Lei; Li, Wei et al. (2016) Long-term stability of axonal boutons in the mouse barrel cortex. Dev Neurobiol 76:252-61
McKenzie, Melissa; Fishell, Gord (2016) Human brains teach us a surprising lesson. Science 354:38-39
Mayer, Christian; Bandler, Rachel C; Fishell, Gord (2016) Lineage Is a Poor Predictor of Interneuron Positioning within the Forebrain. Neuron 92:45-51

Showing the most recent 10 out of 31 publications