Ttie particular mechanisms underlying the sub-second control of dopamine release by glutamate and other neurotransmitters/neuromodulators are not well-known largely because the analytical methodology required to address these important questions has not been sufficiently developed. Although one technique, fast-scan cyclic voltammetry at carbon-fiber microelectrodes, offers sufficient temporal resolution to measure the release and uptake of electroactive biogenic amines such as dopamine, its use in characterizing such sub-second neurotransmitter/neuromodulator interactions is lacking. This deficiency represents a serious roadblock because signaling events in the brain that influence outward physical responses and cognitive events occur within this sub-second time regime. Therefore, the central aim of this proposed research is to develop and apply tools that will allow for the quantitative study of these neurotransmitter/neuromodulator interactions in tissues and in vivo. Two temporally-compatible methods, fast-scan cyclic voltammetry and the photoactivation ofthe p-hydroxyphenyl caged form of glutamate (pHP-Glu), used here as a model caged system, will be applied to measure the sub-second response of dopamine release in response to millisecond timescale exposures to exogenous glutamate. The overall objective of this proposed research will be accomplished by successfully completing two specific aims: (1) integrate the sub-second measurement of electrically-evoked dopamine release with the photo-activation of caged compounds in brain slices and (2) optimize the construction and use of a combined probe/carbon-fiber microelectrode for measuring the impact of caged compound photoactivation on dopamine release events in vivo. This approach is innovative because it is among the first to simultaneously apply these two high temporal resolution techniques in living tissues and animals. The development and application of this proposed methodology is significant because it will enable laboratory researchers to measure sub-second timescale dopamine release in response to ?mu?s-timescale glutamate application. Moreover, this work should have a broad impact since the application of these techniques can be expanded to include the detection of other electroactive neurotransmitters and neuromodulators, such as serotonin, hydrogen peroxide (H{2}O{2}), and nitric oxide (NO), and the photoactivation of other bioactive molecules, such as GABA and specifically designed synthetic agonists/antagonists. Importantly, this research directly relates to the NIH mission of seeking fundamental knowledge about the nature and behavior of living systems and reducing the burdens of illness and disability in that applies to, but is not limited to: (1) fundamental neurobiological studies;(2) studies of dopamine-related movement disorders [e.g. Huntington's disease (HD), Parkinson's disease (PD), Tourette's syndrome (TS)];(3) studies of addiction and depression;and (4) studies addressing the mechanisms of action of CNS-active pharmacological agents.

Public Health Relevance

This project aims at developing a method to study sub-second neurotransmitter interactions. These interactions likely play significant roles in the propagation of human disease. Therefore, a clearer understanding of these interactions has direct relevance to the NIH mission of seeking fundamental knowledge about the nature and behavior of living systems and reducing the burdens of illness and disability.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Exploratory Grants (P20)
Project #
5P20GM103638-02
Application #
8507249
Study Section
Special Emphasis Panel (ZRR1-RI-B)
Project Start
Project End
Budget Start
2013-07-01
Budget End
2014-06-30
Support Year
2
Fiscal Year
2013
Total Cost
$183,877
Indirect Cost
$60,882
Name
University of Kansas Lawrence
Department
Type
DUNS #
076248616
City
Lawrence
State
KS
Country
United States
Zip Code
66045
Smith, Brittny R; Unckless, Robert L (2018) Draft Genome Sequence of Lysinibacillus fusiformis Strain Juneja, a Laboratory-Derived Pathogen of Drosophila melanogaster. Genome Announc 6:
Knewtson, Kelsey E; Rane, Digamber; Peterson, Blake R (2018) Targeting Fluorescent Sensors to Endoplasmic Reticulum Membranes Enables Detection of Peroxynitrite During Cellular Phagocytosis. ACS Chem Biol 13:2595-2602
Gujar, Mahekta R; Sundararajan, Lakshmi; Stricker, Aubrie et al. (2018) Control of Growth Cone Polarity, Microtubule Accumulation, and Protrusion by UNC-6/Netrin and Its Receptors in Caenorhabditis elegans. Genetics 210:235-255
Fresta, Claudia G; Chakraborty, Aishik; Wijesinghe, Manjula B et al. (2018) Non-toxic engineered carbon nanodiamond concentrations induce oxidative/nitrosative stress, imbalance of energy metabolism, and mitochondrial dysfunction in microglial and alveolar basal epithelial cells. Cell Death Dis 9:245
Field, Thomas M; Shin, Mimi; Stucky, Chase S et al. (2018) Electrochemical Measurement of Dopamine Release and Uptake in Zebrafish Following Treatment with Carboplatin. Chemphyschem 19:1192-1196
McGill, Jodi L; Kelly, Sean M; Kumar, Pankaj et al. (2018) Efficacy of mucosal polyanhydride nanovaccine against respiratory syncytial virus infection in the neonatal calf. Sci Rep 8:3021
Waters, Renae; Alam, Perwez; Pacelli, Settimio et al. (2018) Stem cell-inspired secretome-rich injectable hydrogel to repair injured cardiac tissue. Acta Biomater 69:95-106
Saylor, Rachel A; Lunte, Susan M (2018) PDMS/glass hybrid device with a reusable carbon electrode for on-line monitoring of catecholamines using microdialysis sampling coupled to microchip electrophoresis with electrochemical detection. Electrophoresis 39:462-469
Zhu, Qingfu; Heon, Mikala; Zhao, Zheng et al. (2018) Microfluidic engineering of exosomes: editing cellular messages for precision therapeutics. Lab Chip 18:1690-1703
Pacelli, Settimio; Basu, Sayantani; Berkland, Cory et al. (2018) Design of a cytocompatible hydrogel coating to modulate properties of ceramic-based scaffolds for bone repair. Cell Mol Bioeng 11:211-217

Showing the most recent 10 out of 134 publications