Ttie particular mechanisms underlying the sub-second control of dopamine release by glutamate and other neurotransmitters/neuromodulators are not well-known largely because the analytical methodology required to address these important questions has not been sufficiently developed. Although one technique, fast-scan cyclic voltammetry at carbon-fiber microelectrodes, offers sufficient temporal resolution to measure the release and uptake of electroactive biogenic amines such as dopamine, its use in characterizing such sub-second neurotransmitter/neuromodulator interactions is lacking. This deficiency represents a serious roadblock because signaling events in the brain that influence outward physical responses and cognitive events occur within this sub-second time regime. Therefore, the central aim of this proposed research is to develop and apply tools that will allow for the quantitative study of these neurotransmitter/neuromodulator interactions in tissues and in vivo. Two temporally-compatible methods, fast-scan cyclic voltammetry and the photoactivation ofthe p-hydroxyphenyl caged form of glutamate (pHP-Glu), used here as a model caged system, will be applied to measure the sub-second response of dopamine release in response to millisecond timescale exposures to exogenous glutamate. The overall objective of this proposed research will be accomplished by successfully completing two specific aims: (1) integrate the sub-second measurement of electrically-evoked dopamine release with the photo-activation of caged compounds in brain slices and (2) optimize the construction and use of a combined probe/carbon-fiber microelectrode for measuring the impact of caged compound photoactivation on dopamine release events in vivo. This approach is innovative because it is among the first to simultaneously apply these two high temporal resolution techniques in living tissues and animals. The development and application of this proposed methodology is significant because it will enable laboratory researchers to measure sub-second timescale dopamine release in response to ?mu?s-timescale glutamate application. Moreover, this work should have a broad impact since the application of these techniques can be expanded to include the detection of other electroactive neurotransmitters and neuromodulators, such as serotonin, hydrogen peroxide (H{2}O{2}), and nitric oxide (NO), and the photoactivation of other bioactive molecules, such as GABA and specifically designed synthetic agonists/antagonists. Importantly, this research directly relates to the NIH mission of seeking fundamental knowledge about the nature and behavior of living systems and reducing the burdens of illness and disability in that applies to, but is not limited to: (1) fundamental neurobiological studies;(2) studies of dopamine-related movement disorders [e.g. Huntington's disease (HD), Parkinson's disease (PD), Tourette's syndrome (TS)];(3) studies of addiction and depression;and (4) studies addressing the mechanisms of action of CNS-active pharmacological agents.

Public Health Relevance

This project aims at developing a method to study sub-second neurotransmitter interactions. These interactions likely play significant roles in the propagation of human disease. Therefore, a clearer understanding of these interactions has direct relevance to the NIH mission of seeking fundamental knowledge about the nature and behavior of living systems and reducing the burdens of illness and disability.

National Institute of Health (NIH)
National Institute of General Medical Sciences (NIGMS)
Exploratory Grants (P20)
Project #
Application #
Study Section
Special Emphasis Panel (ZRR1-RI-B)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Kansas Lawrence
United States
Zip Code
Zhao, Zheng; Yang, Yang; Zeng, Yong et al. (2016) A microfluidic ExoSearch chip for multiplexed exosome detection towards blood-based ovarian cancer diagnosis. Lab Chip 16:489-96
Grismer, Jesse L; Schulte 2nd, James A; Alexander, Alana et al. (2016) The Eurasian invasion: phylogenomic data reveal multiple Southeast Asian origins for Indian Dragon Lizards. BMC Evol Biol 16:43
Chakraborty, Aishik; Hui, Erica; Waring, Alan J et al. (2016) Combined effect of synthetic protein, Mini-B, and cholesterol on a model lung surfactant mixture at the air-water interface. Biochim Biophys Acta 1858:904-12
Huang, Wei; Beer, Rebecca L; Delaspre, Fabien et al. (2016) Sox9b is a mediator of retinoic acid signaling restricting endocrine progenitor differentiation. Dev Biol 418:28-39
Mosher, Laura J; Frau, Roberto; Pardu, Alessandra et al. (2016) Selective activation of D1 dopamine receptors impairs sensorimotor gating in Long-Evans rats. Br J Pharmacol 173:2122-34
Miller, Danny E; Smith, Clarissa B; Kazemi, Nazanin Yeganeh et al. (2016) Whole-Genome Analysis of Individual Meiotic Events in Drosophila melanogaster Reveals That Noncrossover Gene Conversions Are Insensitive to Interference and the Centromere Effect. Genetics 203:159-71
McGill, Jodi L; Nair, Arathy D S; Cheng, Chuanmin et al. (2016) Vaccination with an Attenuated Mutant of Ehrlichia chaffeensis Induces Pathogen-Specific CD4+ T Cell Immunity and Protection from Tick-Transmitted Wild-Type Challenge in the Canine Host. PLoS One 11:e0148229
Hasan, Anwarul; Waters, Renae; Roula, Boustany et al. (2016) Engineered Biomaterials to Enhance Stem Cell-Based Cardiac Tissue Engineering and Therapy. Macromol Biosci 16:958-77
McGill, Jodi L; Rusk, Rachel A; Guerra-Maupome, Mariana et al. (2016) Bovine Gamma Delta T Cells Contribute to Exacerbated IL-17 Production in Response to Co-Infection with Bovine RSV and Mannheimia haemolytica. PLoS One 11:e0151083
Park, Hyewon; Galbraith, Richard; Turner, Thaddeus et al. (2016) Loss of Ewing sarcoma EWS allele promotes tumorigenesis by inducing chromosomal instability in zebrafish. Sci Rep 6:32297

Showing the most recent 10 out of 75 publications