The central tenet of regenerative medicine is to unlock the genetic programs that promote natural tissue regeneration. However, a major roadblock to achieving this reality is our lack of understanding of the genetic mechanisms that underscore complex tissue regeneration. Appendages -limbs, tail, and fins -are the most studied model organs in non-mammalian regeneration research based on the accessibility of the organs, as well as the efficiency and near perfection of restoration of a three-dimensional tissue comprised of many cell types. While appendage regeneration in mammals is restricted to the distal tips of digits, the zebrafish has maintained an enhanced capacity to regenerate multiple appendage tissues, including bone, nerves, blood vessels, epidermis and pigment cells. Our research program exploits the experimental and genetic prowess of the zebrafish to address two fundamental questions that underscore appendage regeneration. What molecular pathways regulate the natural cellular reprogramming from differentiated, quiescent tissues into highly proliferative, regenerative cells in response to injury? Is there is a core regulatory cascade that defines regenerative outgrowth and patterning during tissue replacement. Specifically, we will test the hypothesis that microRNAs play key roles in the initiation and maintenance of proliferative progenitor tissue during appendage regeneration. Understanding which specific molecular programs by which nonmammalian vertebrate model systems faithfully regrow complex organs will provide the basis for potential regenerative therapies.

Public Health Relevance

Our studies are significant and innovative because we will elucidate the genetic foundation that drives natural cellular reprogramming and tissue replacement during appendage regeneration. These studies will enhance potential therapies to aid wound healing and repair in humans and provide perspective for changing the existing limitations in regenerative capacity of most human organs.

National Institute of Health (NIH)
National Institute of General Medical Sciences (NIGMS)
Exploratory Grants (P20)
Project #
Application #
Study Section
Special Emphasis Panel (ZGM1-TWD-B)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Mount Desert Island Biological Lab
Salsbury Cove
United States
Zip Code
Davis, Allan Peter; Grondin, Cynthia J; Lennon-Hopkins, Kelley et al. (2015) The Comparative Toxicogenomics Database's 10th year anniversary: update 2015. Nucleic Acids Res 43:D914-20
Fidler, Aaron L; Vanacore, Roberto M; Chetyrkin, Sergei V et al. (2014) A unique covalent bond in basement membrane is a primordial innovation for tissue evolution. Proc Natl Acad Sci U S A 111:331-6
Wyffels, Jennifer; King, Benjamin L; Vincent, James et al. (2014) SkateBase, an elasmobranch genome project and collection of molecular resources for chondrichthyan fishes. F1000Res 3:191
Updike, Dustin L; Knutson, Andrew Kek?pa'a; Egelhofer, Thea A et al. (2014) Germ-granule components prevent somatic development in the C. elegans germline. Curr Biol 24:970-5
Shaw, Joseph R; Hampton, Thomas H; King, Benjamin L et al. (2014) Natural selection canalizes expression variation of environmentally induced plasticity-enabling genes. Mol Biol Evol 31:3002-15
Field, Daniel J; Gauthier, Jacques A; King, Benjamin L et al. (2014) Toward consilience in reptile phylogeny: miRNAs support an archosaur, not lepidosaur, affinity for turtles. Evol Dev 16:189-96