This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. Primary support for the subproject and the subproject's principal investigator may have been provided by other sources, including other NIH sources. The Total Cost listed for the subproject likely represents the estimated amount of Center infrastructure utilized by the subproject, not direct funding provided by the NCRR grant to the subproject or subproject staff. Human malaria parasites that sicken more than five percent of the global human population annually comprise only four species in a single genus. This represents a miniscule fraction of the phylogenetic diversity of malaria, most of which occurs in birds and is undescribed. An adequate description of avian malaria diversity and host-parasite dynamics is needed to understand the evolution of the human parasites. In fieldwork since 2007, we have initiated the first large-scale survey of avian malaria in the tropical Andes, the premier global hotspot for alpha- and beta-diversity of birds. We have collected over 6000 frozen tissues and 3000 blood samples across a 4000m elevational gradient in Peru, representing 500 host species from 46 families, while rigorously documenting host and parasite materials and data in a museum database. A preliminary screening by microscopy of at least 100 samples from each of five elevations shows two novel findings: (1) a dramatic mid-elevation peak in malaria infection rate corresponding with the subtropical 'cloud forest'zone;and (2) striking variation in malaria prevalence among avian clades, with clades that expanded to South America after the formation of the Isthmus of Panama having the highest rates of infection.
The aims of this project are (1) to describe malaria parasite diversity across a steep temperature and pressure gradient along which there is high diversity and turnover of host species;and (2) to determine the effects of host phylogeny, biogeography, and respiratory adaptations to altitude on susceptibility to avian malaria.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Exploratory Grants (P20)
Project #
5P20RR018754-08
Application #
8360215
Study Section
Special Emphasis Panel (ZRR1-RI-B (01))
Project Start
2011-06-01
Project End
2012-05-31
Budget Start
2011-06-01
Budget End
2012-05-31
Support Year
8
Fiscal Year
2011
Total Cost
$59,395
Indirect Cost
Name
University of New Mexico
Department
Biology
Type
Schools of Arts and Sciences
DUNS #
868853094
City
Albuquerque
State
NM
Country
United States
Zip Code
87131
Swanteson-Franz, Rachel J; Marquez, Destinie A; Goldstein, Craig I et al. (2018) New hairworm (Nematomorpha, Gordiida) species described from the Arizona Madrean Sky Islands. Zookeys :131-145
Banerjee, Soumya; Perelson, Alan S; Moses, Melanie (2017) Modelling the effects of phylogeny and body size on within-host pathogen replication and immune response. J R Soc Interface 14:
Gunning, Christian E; Ferrari, Matthew J; Erhardt, Erik B et al. (2017) Evidence of cryptic incidence in childhood diseases. Proc Biol Sci 284:
Brant, Sara V; Loker, Eric S; Casalins, Laura et al. (2017) Phylogenetic Placement of a Schistosome from an Unusual Marine Snail Host, the False Limpet (Siphonaria lessoni) and Gulls (Larus dominicanus) from Argentina with a Brief Review of Marine Schistosomes from Snails. J Parasitol 103:75-82
Hanson, David T; Stutz, Samantha S; Boyer, John S (2016) Why small fluxes matter: the case and approaches for improving measurements of photosynthesis and (photo)respiration. J Exp Bot 67:3027-39
Zhou, Peng; Tachedjian, Mary; Wynne, James W et al. (2016) Contraction of the type I IFN locus and unusual constitutive expression of IFN-? in bats. Proc Natl Acad Sci U S A 113:2696-701
Ernst, Crystal M; Hanelt, Ben; Buddle, Christopher M (2016) Parasitism of Ground Beetles (Coleoptera: Carabidae) by a New Species of Hairworm (Nematomorpha: Gordiida) in Arctic Canada. J Parasitol 102:327-35
Peña, Janeth J; Adema, Coen M (2016) The Planorbid Snail Biomphalaria glabrata Expresses a Hemocyanin-Like Sequence in the Albumen Gland. PLoS One 11:e0168665
Ng, Justin H J; Tachedjian, Mary; Deakin, Janine et al. (2016) Evolution and comparative analysis of the bat MHC-I region. Sci Rep 6:21256
Banerjee, Soumya; Guedj, Jeremie; Ribeiro, Ruy M et al. (2016) Estimating biologically relevant parameters under uncertainty for experimental within-host murine West Nile virus infection. J R Soc Interface 13:

Showing the most recent 10 out of 241 publications