One of the most basic needs of investigators studying skin disease is the ability to use tissue sections to analyze the pathological changes at the tissue and cellular level. This analysis requires access to specialized equipment for tissue processing and to highly trained personnel, neither of which can be afforded by most research laboratories. Furthermore, since qualitative and quantitative evaluation of skin and skin appendages requires precise and reproducible orientation of skin sections, histology services not specialized in skin generally produce skin sections of substandard quality. Therefore, the objective of the Morphology and Phenotyping Core is to provide investigators with the tools and expertise to process and analyze skin samples. The Core provides education as well as research and technical consultations to investigators. Further, the Core owns the equipment necessary to process and section skin samples, and employs histology technicians trained in handling skin samples. Thus, the Core is able to provide investigators with high-quality processing and sectioning of skin samples as well as with the preparation of basic histological stains. Whereas histological analysis of skin samples represents the first step in analyzing skin phenotypes, subsequent analyses include immunostaining for various markers of skin proliferation and differentiation. The Core possesses a wide variety of custom-made antibodies that recognize such markers and will provide investigators with immunostaining services using these antibodies. Finally, the Core will offer consultation services by dermatopathologists aimed at assisting investigators with the interpretation of skin phenotypes.

Public Health Relevance

The Morphology and Phenotyping Core will enable UCAMC-SDRC members to analyze how skin structure and function are affected in various human skin diseases and in mouse models designed to mimic these disorders.

Agency
National Institute of Health (NIH)
Institute
National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS)
Type
Center Core Grants (P30)
Project #
2P30AR057212-06
Application #
8753457
Study Section
Special Emphasis Panel (ZAR1-KM (M1))
Project Start
Project End
Budget Start
2014-08-20
Budget End
2015-07-31
Support Year
6
Fiscal Year
2014
Total Cost
$124,224
Indirect Cost
$44,101
Name
University of Colorado Denver
Department
Type
DUNS #
041096314
City
Aurora
State
CO
Country
United States
Zip Code
80045
Ishitsuka, Yosuke; Huebner, Aaron J; Rice, Robert H et al. (2016) Lce1 Family Members Are Nrf2-Target Genes that Are Induced to Compensate for the Loss of Loricrin. J Invest Dermatol 136:1656-63
Liu, Ying; Snedecor, Elizabeth R; Zhang, Xu et al. (2016) Correction of Hair Shaft Defects through Allele-Specific Silencing of Mutant Krt75. J Invest Dermatol 136:45-51
Reynolds, Susan D; Rios, Cydney; Wesolowska-Andersen, Agata et al. (2016) Airway Progenitor Clone Formation Is Enhanced by Y-27632-Dependent Changes in the Transcriptome. Am J Respir Cell Mol Biol 55:323-36
Mukherjee, Nabanita; Lu, Yan; Almeida, Adam et al. (2016) Use of a MCL-1 inhibitor alone to de-bulk melanoma and in combination to kill melanoma initiating cells. Oncotarget :
Tilley, Cynthia; Deep, Gagan; Agarwal, Chapla et al. (2016) Silibinin and its 2,3-dehydro-derivative inhibit basal cell carcinoma growth via suppression of mitogenic signaling and transcription factors activation. Mol Carcinog 55:3-14
Zhang, Lei; Ferreyros, Michael; Feng, Weiguo et al. (2016) Defects in Stratum Corneum Desquamation Are the Predominant Effect of Impaired ABCA12 Function in a Novel Mouse Model of Harlequin Ichthyosis. PLoS One 11:e0161465
Kohler, Stephanie L; Pham, Michael N; Folkvord, Joy M et al. (2016) Germinal Center T Follicular Helper Cells Are Highly Permissive to HIV-1 and Alter Their Phenotype during Virus Replication. J Immunol 196:2711-22
Jin, Ying; Andersen, Genevieve; Yorgov, Daniel et al. (2016) Genome-wide association studies of autoimmune vitiligo identify 23 new risk loci and highlight key pathways and regulatory variants. Nat Genet 48:1418-1424
Du, L; Chen, X; Cao, Y et al. (2016) Overexpression of PIK3CA in murine head and neck epithelium drives tumor invasion and metastasis through PDK1 and enhanced TGFβ signaling. Oncogene 35:4641-52
Morton, J J; Bird, G; Keysar, S B et al. (2016) XactMice: humanizing mouse bone marrow enables microenvironment reconstitution in a patient-derived xenograft model of head and neck cancer. Oncogene 35:290-300

Showing the most recent 10 out of 48 publications