The main objective of the Molecular Cytology Core Facility (MCCF) is to provide to users state-of-the-art technologies in a multi-user environment, for preparation of tissue samples, for detection, precise localization and analysis of the expression of molecules with important cell functions during development and in cancer. The technologies include in situ localization of mRNA and proteins, cell proliferation, stem cell potential and differentiation, apoptosis and senescence, angiogenesis and hypoxia, histological evaluation and molecular in situ characterization of phenotypes of knock- out, transgenic mice and human tumors. In addition to the training and assistance provided to the researchers in the execution of these technologies, automated experiments for in situ molecular detection are carried at the MCCF. The optical microscopes [wide field, laser scanning (point scanning, spinning disc and multiphoton)] are efficiently used by researchers for image acquisition, including live imaging. Experienced MCCF staff is instrumental in assisting users with stereological analysis, co-localization studies and 3D reconstructions. Specific services provided are: tissue processing and sample preparation;execution of methods for in situ molecular detection;application of a wide range of optical microscopy techniques in conjunction with image acquisition and analysis.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA008748-47
Application #
8375206
Study Section
Subcommittee G - Education (NCI)
Project Start
Project End
2013-12-31
Budget Start
2012-01-09
Budget End
2012-12-31
Support Year
47
Fiscal Year
2012
Total Cost
$251,118
Indirect Cost
Name
Sloan-Kettering Institute for Cancer Research
Department
Type
DUNS #
064931884
City
New York
State
NY
Country
United States
Zip Code
10065
Steuer, Conor E; Behera, Madhusmita; Berry, Lynne et al. (2016) Role of race in oncogenic driver prevalence and outcomes in lung adenocarcinoma: Results from the Lung Cancer Mutation Consortium. Cancer 122:766-72
Dominguez-Rosado, Ismael; Moutinho Jr, Vitor; DeMatteo, Ronald P et al. (2016) Outcomes of the Memorial Sloan Kettering Cancer Center International General Surgical Oncology Fellowship. J Am Coll Surg 222:961-6
Iasonos, Alexia; O'Quigley, John (2016) Integrating the escalation and dose expansion studies into a unified Phase I clinical trial. Contemp Clin Trials 50:124-34
Ulaner, Gary A; Hyman, David M; Ross, Dara S et al. (2016) Detection of HER2-Positive Metastases in Patients with HER2-Negative Primary Breast Cancer Using 89Zr-Trastuzumab PET/CT. J Nucl Med 57:1523-1528
Brown, Anna M; Nagala, Sidhartha; McLean, Mary A et al. (2016) Multi-institutional validation of a novel textural analysis tool for preoperative stratification of suspected thyroid tumors on diffusion-weighted MRI. Magn Reson Med 75:1708-16
Akkari, Leila; Gocheva, Vasilena; Quick, Marsha L et al. (2016) Combined deletion of cathepsin protease family members reveals compensatory mechanisms in cancer. Genes Dev 30:220-32
Theilen, Till M; Chou, Alexander J; Klimstra, David S et al. (2016) Esophageal Adenocarcinoma and Squamous Cell Carcinoma in Children and Adolescents: Report of 3 Cases and Comprehensive Literature Review. J Pediatr Surg Case Rep 5:23-29
Robinson, June K; Halpern, Allan C (2016) Cost-effective Melanoma Screening. JAMA Dermatol 152:19-21
Calzavara-Pinton, Pier Giacomo; Rossi, Maria Teresa; Zanca, Arianna et al. (2016) Oral Polypodium leucomotos increases the anti-inflammatory and melanogenic responses of the skin to different modalities of sun exposures: a pilot study. Photodermatol Photoimmunol Photomed 32:22-7
Ripley, R Taylor; Suzuki, Kei; Tan, Kay See et al. (2016) Postinduction positron emission tomography assessment of N2 nodes is not associated with ypN2 disease or overall survival in stage IIIA non-small cell lung cancer. J Thorac Cardiovasc Surg 151:969-77, 979.e1-3

Showing the most recent 10 out of 4768 publications