The Mayo Clinic Cancer Center (MCCC) is a matrix center within the Mayo Clinic / Mayo Medical School. The Center is made up of 428 members (net increase of 97 new members since 2003) from 55 departments based at 3 geographical sites (Rochester, MN - MCR;Jacksonville, FL - MCF;and Phoenix/Scottsdale, AZ - MCA). The goal of the MCCC is to provide the best cancer care today, while developing improved strategies for tomorrow, serving cancer patients throughout the U.S. and the world. MCCC has 12 research programs: Women's Cancer;Gastrointestinal Cancer;Prostate Cancer;Hematologic Malignancies;Neuro-oncology;Cancer Imaging;Cell Biology;Developmental Therapeutics;Immunology &Immunotherapy;Gene &Virus Therapy;Genetic Epidemiology &Risk Assessment;Cancer Prevention &Control. Research is facilitated by 15 shared resources: Survey Research, Pharmacy, Biostatistics, Bioinformatics, Tissue &Cell Molecular Analysis, Biospecimens Accessioning &Processing, Clinical Research Office;Transgenic &Gene Targeted Mouse Shared Resource, Protein Chemistry &Proteomics, Flow Cytometry/Optical Morphology, Electron Microscopy, Pharmacology, Gene &Virus Therapy, Cytogenetics, and Gene Analysis. Since the last renewal, MCCC has continued to grow with an increase in overall peer-reviewed funding from $77.6 million to $105.8 million and an increase in NCI funding from $56.3 million to $75.7 million. Of particular note is that, in addition to an increase in investigator-initiated grants, MCCC has 2 new SPOREs (Breast and Brain) and 2 new training grants. Furthermore, there has been successful competitive renewal of 4 other SPOREs (Lymphoma, Prostate, Multiple Myeloma, Pancreas), as well as several multidisciplinary (P01, N01, 2 U01s, and 2 U10s) and 4 training grants. Research productivity is demonstrated by a 28% increase in annual publications during this period, particularly high impact clinical and scientific publications. Since the last competitive renewal, MCCC has benefited from: 1) new facilities with a net increase in new lab space (>100,000 sq ft) as well as new inpatient / outpatient space;2) increased institutional commitment with a) 11 new endowed professorships ($22M institutional / $22M philanthropic), b) salary/start-up funds for 15 new faculty, c) funds to enhance integration of MCCC across 3 sites ($7.6M), and d) funds to enhance accrual of underserved minorities to clinical trials at MCA and MCF ($13M over 5 years). During the past 5 years, Developmental Funds from CCSG have been leveraged to aid in faculty recruitment at each of the 3 sites. During the next 5 years, we have plans to expand genetics, lung cancer, and melanoma research.

Public Health Relevance

The Mayo Clinic Cancer Center Support Grant provides the infrastructure support to facilitate basic, clinical, and population sciences research relevant to cancer research conducted within Mayo Clinic. The Center's goal is to translate the discoveries in the laboratory into improved methods for cancer prevention, detection, diagnosis, prognosis, and therapy. The ultimate goal is to relieve the burdens of illness in patients with cancer.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA015083-38
Application #
8320383
Study Section
Subcommittee G - Education (NCI)
Program Officer
Shafik, Hasnaa
Project Start
1997-04-25
Project End
2014-02-28
Budget Start
2012-03-01
Budget End
2013-02-28
Support Year
38
Fiscal Year
2012
Total Cost
$5,470,597
Indirect Cost
$1,779,567
Name
Mayo Clinic, Rochester
Department
Type
DUNS #
006471700
City
Rochester
State
MN
Country
United States
Zip Code
55905
Cooperberg, Matthew R; Davicioni, Elai; Crisan, Anamaria et al. (2015) Combined value of validated clinical and genomic risk stratification tools for predicting prostate cancer mortality in a high-risk prostatectomy cohort. Eur Urol 67:326-33
Bogenberger, James M; Delman, Devora; Hansen, Nanna et al. (2015) Ex vivo activity of BCL-2 family inhibitors ABT-199 and ABT-737 combined with 5-azacytidine in myeloid malignancies. Leuk Lymphoma 56:226-9
Sami, Sarmed S; Ragunath, Krish; Iyer, Prasad G (2015) Screening for Barrett's esophagus and esophageal adenocarcinoma: rationale, recent progress, challenges, and future directions. Clin Gastroenterol Hepatol 13:623-34
Fackler, Mary Jo; Lopez Bujanda, Zoila; Umbricht, Christopher et al. (2014) Novel methylated biomarkers and a robust assay to detect circulating tumor DNA in metastatic breast cancer. Cancer Res 74:2160-70
Porrata, Luis F; Ristow, Kay M; Habermann, Thomas M et al. (2014) Peripheral blood absolute lymphocyte/monocyte ratio during rituximab, cyclophosphamide, doxorubicin, vincristine and prednisone treatment cycles predicts clinical outcomes in diffuse large B-cell lymphoma. Leuk Lymphoma 55:2728-38
Yoon, Harry H; Tougeron, David; Shi, Qian et al. (2014) KRAS codon 12 and 13 mutations in relation to disease-free survival in BRAF-wild-type stage III colon cancers from an adjuvant chemotherapy trial (N0147 alliance). Clin Cancer Res 20:3033-43
Espejo, Rosario; Jeng, Yowjiun; Paulucci-Holthauzen, Adriana et al. (2014) PTP-PEST targets a novel tyrosine site in p120 catenin to control epithelial cell motility and Rho GTPase activity. J Cell Sci 127:497-508
Banck, Michaela S; Beutler, Andreas S (2014) Advances in small bowel neuroendocrine neoplasia. Curr Opin Gastroenterol 30:163-7
Boland, Jennifer M; Wampfler, Jason A; Jang, Jin S et al. (2014) Pulmonary adenocarcinoma with signet ring cell features: a comprehensive study from 3 distinct patient cohorts. Am J Surg Pathol 38:1681-8
Imperiale, Thomas F; Ransohoff, David F; Itzkowitz, Steven H et al. (2014) Multitarget stool DNA testing for colorectal-cancer screening. N Engl J Med 370:1287-97

Showing the most recent 10 out of 340 publications