Proteomics Core Facility The Proteomics Core strives to provide outstanding mass spectrometry-based service and training to Cancer Center researchers. The core provides state-of-the-art analysis for protein identification from mixtures of proteins;defining post-translational modifications (i.e. phosphorylation, acetylation, ubiquitination);and quantitative analysis of changes in protein expression or modification using methods such as SILAC and ITRAQ, The core works with investigators to ensure use of the best proteomic applications for design of experimental protocols needed to answer important cancer biology-related questions and provides a unique training environment for students and fellows. Highlights of proteomic research supported by the core include papers In Cell (Salmon), Nature (Zhang), PNAS (Whang) and Molecular and Cellular Biology (Burridge, Marzluff, Patterson). The core is led by three Ph.D. scientists with extensive proteomics experience: Drs. Lee Graves (Faculty Director), Maria Hines (Facility Director) and Xian Chen (Technology Development Director). Core usage has steadily increased and reflects the fundamental need to understand proteome dynamics at an ever increasing level of sophistication. The Institution and Cancer Center has provided more than $2.5 million dollars in the past five years for new mass spectrometry and nano-LC instrumentation. The core continues to increase its capacity to perform high-throughput large scale, quantitative proteomics. To accomplish these objectives, CCSG support of $144,563 is proposed, which is approximately 30% of the projected Proteomics Core operating costs for 2010. In 2009, the core was used by 46 cancer center members (100% peer-reviewed), accounting for 86% of total core usage. The proposed budget will partially support salaries of six core personnel and sen/ice contracts for mass spectrometers. This is an approximate 19% increase in CCSG support that is needed for the expansion of large scale high-throughput, quantitative proteomics. Future plans involve expanding the mass spectrometry-based infrastructure with an additional LTQ Orbitrap for support of state-of-the-art quantitative proteomics.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA016086-38
Application #
8594156
Study Section
Subcommittee G - Education (NCI)
Project Start
Project End
Budget Start
2013-12-01
Budget End
2014-11-30
Support Year
38
Fiscal Year
2014
Total Cost
$202,670
Indirect Cost
$66,182
Name
University of North Carolina Chapel Hill
Department
Type
DUNS #
608195277
City
Chapel Hill
State
NC
Country
United States
Zip Code
27599
Wang, Sheng; Wacker, Daniel; Levit, Anat et al. (2017) D4 dopamine receptor high-resolution structures enable the discovery of selective agonists. Science 358:381-386
Westmoreland, Katherine D; Montgomery, Nathan D; Stanley, Christopher C et al. (2017) Plasma Epstein-Barr virus DNA for pediatric Burkitt lymphoma diagnosis, prognosis and response assessment in Malawi. Int J Cancer 140:2509-2516
Kang, SunAh; Fedoriw, Yuri; Brenneman, Ethan K et al. (2017) BAFF Induces Tertiary Lymphoid Structures and Positions T Cells within the Glomeruli during Lupus Nephritis. J Immunol 198:2602-2611
Ehe, Ben K; Lamson, David R; Tarpley, Michael et al. (2017) Identification of a DYRK1A-mediated phosphorylation site within the nuclear localization sequence of the hedgehog transcription factor GLI1. Biochem Biophys Res Commun 491:767-772
Conway, Kathleen; Edmiston, Sharon N; Parrish, Eloise et al. (2017) Breast tumor DNA methylation patterns associated with smoking in the Carolina Breast Cancer Study. Breast Cancer Res Treat 163:349-361
Williams, Lindsay A; Olshan, Andrew F; Hong, Chi-Chen et al. (2017) Alcohol Intake and Breast Cancer Risk in African American Women from the AMBER Consortium. Cancer Epidemiol Biomarkers Prev 26:787-794
Quach, Bryan; Furey, Terrence S (2017) DeFCoM: analysis and modeling of transcription factor binding sites using a motif-centric genomic footprinter. Bioinformatics 33:956-963
Hatkevich, Talia; Kohl, Kathryn P; McMahan, Susan et al. (2017) Bloom Syndrome Helicase Promotes Meiotic Crossover Patterning and Homolog Disjunction. Curr Biol 27:96-102
Bower, Jacquelyn J; Vance, Leah D; Psioda, Matthew et al. (2017) Patterns of cell cycle checkpoint deregulation associated with intrinsic molecular subtypes of human breast cancer cells. NPJ Breast Cancer 3:9
Hanson, Laura C; Collichio, Frances; Bernard, Stephen A et al. (2017) Integrating Palliative and Oncology Care for Patients with Advanced Cancer: A Quality Improvement Intervention. J Palliat Med 20:1366-1371

Showing the most recent 10 out of 1197 publications