The Tumor Biology and Microenvironment (TBM) Program aims to eradicate cancer by identifying the cellular and molecular mechanisms that drive interactions between tumors and their microenvironments, and develop and test innovative diagnostic and treatment strategies. This highly integrated program includes 36 members from 16 WSU departments and $14,193,608 in grants, of which $5,908,215 is peer reviewed. The Program goals are addressed with three themes that encompass basic, preclinical, and clinical research. The first theme identifies and exploits the mechanisms that confer phenotypical plasticity and survival of tumor cells in tumor progression. Translational research is conducted to evaluate the potential clinical application of these molecular determinants as tumor markers and/or therapeutic targets. The second theme identifies and exploits the mechanisms that confer the ?unhealable wounding? of tumor stroma. Our investigators identify and characterize factors in an extracellular proteolysis and signaling network that enable tumor cells to adapt to and subvert the microenvironment in the development of bone metastases. Key molecules in this network are evaluated to determine if they can be used to predict cancer progression and treatment outcomes. The third theme identifies and exploits the host immune response to tumor progression. Bispecific antibody-armed activated T-cells are tested in solid tumors and hematologic malignancies in the context of chemotherapy or high dose chemotherapy and stem cell transplantation. Anti-tumor DNA vaccines are developed and tested using mouse and domesticated cat models. Our investigators study immune modulators and inhibitors of adverse pro-inflammatory responses. Our members also develop novel vehicles to deliver immunotherapeutic agents. TBM Program members actively collaborate with members of the MI, MT, and PSDR Programs at KCI. Of the 612 manuscripts published from December 2010 to November 2014, 44% and 38% were intra- and inter-programmatic, respectively, and 27% were multi-institutional collaborations.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
3P30CA022453-36S2
Application #
9697923
Study Section
Subcommittee I - Transistion to Independence (NCI)
Program Officer
Ptak, Krzysztof
Project Start
Project End
Budget Start
2017-12-01
Budget End
2018-11-30
Support Year
36
Fiscal Year
2018
Total Cost
Indirect Cost
Name
Wayne State University
Department
Type
DUNS #
001962224
City
Detroit
State
MI
Country
United States
Zip Code
48202
Chammaa, May; Malysa, Agnes; Redondo, Carlos et al. (2018) RUMI is a novel negative prognostic marker and therapeutic target in non-small-cell lung cancer. J Cell Physiol 233:9548-9562
Alsaab, Hashem O; Sau, Samaresh; Alzhrani, Rami M et al. (2018) Tumor hypoxia directed multimodal nanotherapy for overcoming drug resistance in renal cell carcinoma and reprogramming macrophages. Biomaterials 183:280-294
Mills, Anne M; Peres, Lauren C; Meiss, Alice et al. (2018) Targetable Immune Regulatory Molecule Expression in High-Grade Serous Ovarian Carcinomas in African American Women: A Study of PD-L1 and IDO in 112 Cases From the African American Cancer Epidemiology Study (AACES). Int J Gynecol Pathol :
Vaishampayan, Ulka N; Podgorski, Izabela; Heilbrun, Lance K et al. (2018) Biomarkers and Bone Imaging Dynamics Associated with Clinical Outcomes of Oral Cabozantinib Therapy in Metastatic Castrate-Resistant Prostate Cancer. Clin Cancer Res :
Campbell, Douglas H; Lund, Maria E; Nocon, Aline L et al. (2018) Detection of glypican-1 (GPC-1) expression in urine cell sediments in prostate cancer. PLoS One 13:e0196017
Sexton, Rachel E; Hachem, Ali H; Assi, Ali A et al. (2018) Metabotropic glutamate receptor-1 regulates inflammation in triple negative breast cancer. Sci Rep 8:16008
Cheriyan, Vino T; Alsaab, Hashem; Sekhar, Sreeja et al. (2018) A CARP-1 functional mimetic compound is synergistic with BRAF-targeting in non-small cell lung cancers. Oncotarget 9:29680-29697
Saadat, Nadia; Liu, Fangchao; Haynes, Brittany et al. (2018) Nano-delivery of RAD6/Translesion Synthesis Inhibitor SMI#9 for Triple-negative Breast Cancer Therapy. Mol Cancer Ther 17:2586-2597
Dedigama-Arachchige, Pavithra M; Acharige, Nuwan P N; Pflum, Mary Kay H (2018) Identification of PP1-Gadd34 substrates involved in the unfolded protein response using K-BIPS, a method for phosphatase substrate identification. Mol Omics 14:121-133
Burl, Rayanne B; Ramseyer, Vanesa D; Rondini, Elizabeth A et al. (2018) Deconstructing Adipogenesis Induced by ?3-Adrenergic Receptor Activation with Single-Cell Expression Profiling. Cell Metab 28:300-309.e4

Showing the most recent 10 out of 826 publications