The objective of the Biostatistics and Research Information Shared Resource is to provide collaborative and consultative services to Stanford Cancer Center investigators and thereby add value in all phases of cancer research. Capabilities include high-quality biostatistics consultation on the use of standard methods as well as innovation in developing methods specifically to enhance the basic and translational research efforts of a discovery-oriented Cancer Center faculty. As a dedicated core with a clear means of access, the Biostatistics Shared Resource greatly benefits those researchers in need of statistical collaboration and consultation in their studies. Since official inception of this Shared Resource in 2005, more than 200 Cancer Center members representing all ten Research Programs have been assisted through the Biostatistics Shared Resource. Significant additional contributions by staff in this Shared Resource include new methods in microarray data analysis and genetic association studies, as well as innovative designs for clinical trials. The core also advises on strategic issues with statistical content, such as criteria for scientific review and development of databases and registries. It provides support to the Northern California Cancer Center, with a dedicated on site senior biostatistician staff member who is responsible for first point of contact and access to the entire Resource. The Shared Resource has responsibility for supporting the development of a Research Database for the Cancer Center, an effort that is currently underway, using methods that have been successfully deployed in two landmark programs (Lymphoma and Hematopoetic Cell Transplant) in the Cancer Center. The Shared Resource is also responsible for caBIG ? activities at Stanford.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA124435-07
Application #
8475467
Study Section
Subcommittee G - Education (NCI)
Project Start
Project End
Budget Start
2013-06-01
Budget End
2014-05-31
Support Year
7
Fiscal Year
2013
Total Cost
$175,586
Indirect Cost
$3
Name
Stanford University
Department
Type
DUNS #
009214214
City
Stanford
State
CA
Country
United States
Zip Code
94305
Patel, Manali I; Sundaram, Vandana; Desai, Manisha et al. (2018) Effect of a Lay Health Worker Intervention on Goals-of-Care Documentation and on Health Care Use, Costs, and Satisfaction Among Patients With Cancer: A Randomized Clinical Trial. JAMA Oncol 4:1359-1366
Trieu, Vanessa; Pinto, Harlan; Riess, Jonathan W et al. (2018) Weekly Docetaxel, Cisplatin, and Cetuximab in Palliative Treatment of Patients with Squamous Cell Carcinoma of the Head and Neck. Oncologist 23:764-e86
Kuonen, François; Surbeck, Isabelle; Sarin, Kavita Y et al. (2018) TGF?, Fibronectin and Integrin ?5?1 Promote Invasion in Basal Cell Carcinoma. J Invest Dermatol 138:2432-2442
Gee, Marvin H; Han, Arnold; Lofgren, Shane M et al. (2018) Antigen Identification for Orphan T Cell Receptors Expressed on Tumor-Infiltrating Lymphocytes. Cell 172:549-563.e16
Malta, Tathiane M; Sokolov, Artem; Gentles, Andrew J et al. (2018) Machine Learning Identifies Stemness Features Associated with Oncogenic Dedifferentiation. Cell 173:338-354.e15
Banerjee, Imon; Gensheimer, Michael Francis; Wood, Douglas J et al. (2018) Probabilistic Prognostic Estimates of Survival in Metastatic Cancer Patients (PPES-Met) Utilizing Free-Text Clinical Narratives. Sci Rep 8:10037
Thorsson, Vésteinn; Gibbs, David L; Brown, Scott D et al. (2018) The Immune Landscape of Cancer. Immunity 48:812-830.e14
Rogers, Zoë N; McFarland, Christopher D; Winters, Ian P et al. (2018) Mapping the in vivo fitness landscape of lung adenocarcinoma tumor suppression in mice. Nat Genet 50:483-486
Nair, Viswam S; Sundaram, Vandana; Desai, Manisha et al. (2018) Accuracy of Models to Identify Lung Nodule Cancer Risk in the National Lung Screening Trial. Am J Respir Crit Care Med 197:1220-1223
She, Richard; Jarosz, Daniel F (2018) Mapping Causal Variants with Single-Nucleotide Resolution Reveals Biochemical Drivers of Phenotypic Change. Cell 172:478-490.e15

Showing the most recent 10 out of 322 publications