The Portland Area Communication Research Core Center will support twelve principal investigators in its Research Base, each of whom has one or more qualifying R01 grants funded by the NIDCD and or another institute. Eight other investigators with similar research interests are also members of the Core Center. The twenty investigators are affiliated with a variety of institutes in the greater Portland area: the Oregon Hearing Research Center (OHRC) at the Oregon Health &Science University (OHSU);the Vollum Institute (OHSU);the Department of Otolaryngology;Head &Neck Surgery (OHSU);the Department of Biomedical Engineering (OHSU);the National Center for Rehabilitative Auditory Research (NCRAR) at the Portland Veterans Administration (VA) Medical Center;and the Washington State University (WSU) Vancouver, which is just across the Columbia River from Portland. The group has a strong focus on and a substantial record of accomplishments in the auditory and vestibular sciences, with additional investigators interested in the olfactory system. The goal of the Core Center is to centralize expertise on bioengineering, imaging, and mouse genetics in order to enhance presently funded research projects and to stimulate collaborations among participating investigators. In order to achieve these goals, continued support of three Research Core facilities is proposed. The Bioengineering Core (Alfred Nuttall and Stephen David, Co-Directors) provides computer hardware and software support, support for design and construction of analog and digital circuits, as well as expertise and instrumentation for measurement of hearing acuity in live animals. The Imaging Core (Dennis Trune and Peter Steyger, Co-Directors) centralizes light, confocal, and electron-microscopic imaging through the existing Oregon Hearing Research Center infrastructure. The Mouse Core (Peter Gillespie and John Brigande, Co-Directors) provides expertise on mouse husbandry and genotyping, as well as in utero virus injection and plasmid electroporation to deliver exogenous genes into the inner ear. Support for an Administrative Shell is also requested. Support of the Core Center will facilitate increased efficiency, broader collaborations, and novel approaches in NIDCD-funded research projects.

Public Health Relevance

This P30 Core Center supports twenty investigators who carry out research into the basic sensory, pathologic and disease mechanisms of hearing, balance, and smell. The Core Center enables more efficient research programs, which will lead to better understanding of normal and dysfunctional communication processes. Core B Bioengineering Core Director: Alfred L. Nuttall DESCRIPTION (provided by applicant): The Bioengineering Core will support P30 investigators and collaborating investigators, providing engineering and software expertise needed in the projects of the users, and maintaining the OHRC auditory-brainstem-response (ABR), distortion-product otoacoustic emission (DPOAE), and sound exposure facilities. The P30 Engineer will design and build custom electronic and mechanical devices that solve experimental and data-acquisition problems. The P30 Programmer will write computer software to address the experimental needs of the users. Projects undertaken by the Engineer and Programmer will extend the funded work of the Core users and stimulate collaborative studies among users. The P30 staff will help create common databases that would allow sharing of experimental data among users and enable more secure data backup. Core staff also advise faculty on specification and purchase of computers, instrumentation, and software. PUBLIC HEALTH RELEVANCE: This P30 Core Center supports 20 investigators who carry out research into the basic and disease mechanisms of hearing, balance, and smell. The Bioengineering Core supports a subset of these investigators, facilitating research programs by offering computing and engineering expertise.

National Institute of Health (NIH)
Center Core Grants (P30)
Project #
Application #
Study Section
Special Emphasis Panel (ZDC1)
Program Officer
Platt, Christopher
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Oregon Health and Science University
Schools of Medicine
United States
Zip Code
Reiss, Lina A J; Ito, Rindy A; Eggleston, Jessica L et al. (2015) Pitch adaptation patterns in bimodal cochlear implant users: over time and after experience. Ear Hear 36:e23-34
MacArthur, Carol J; Wilmot, Beth; Wang, Linda et al. (2014) Genetic susceptibility to chronic otitis media with effusion: candidate gene single nucleotide polymorphisms. Laryngoscope 124:1229-35
Avenarius, Matthew R; Saylor, Katherine W; Lundeberg, Megan R et al. (2014) Correlation of actin crosslinker and capper expression levels with stereocilia growth phases. Mol Cell Proteomics 13:606-20
Krey, Jocelyn F; Wilmarth, Phillip A; Shin, Jung-Bum et al. (2014) Accurate label-free protein quantitation with high- and low-resolution mass spectrometers. J Proteome Res 13:1034-44
Maeda, Reo; Kindt, Katie S; Mo, Weike et al. (2014) Tip-link protein protocadherin 15 interacts with transmembrane channel-like proteins TMC1 and TMC2. Proc Natl Acad Sci U S A 111:12907-12
Wilson, Teresa; Omelchenko, Irina; Foster, Sarah et al. (2014) JAK2/STAT3 inhibition attenuates noise-induced hearing loss. PLoS One 9:e108276
Detwiller, Kara Y; Smith, Timothy L; Alt, Jeremiah A et al. (2014) Differential expression of innate immunity genes in chronic rhinosinusitis. Am J Rhinol Allergy 28:374-7
Reiss, Lina A J; Ito, Rindy A; Eggleston, Jessica L et al. (2014) Abnormal binaural spectral integration in cochlear implant users. J Assoc Res Otolaryngol 15:235-48
Apostolides, Pierre F; Trussell, Laurence O (2014) Superficial stellate cells of the dorsal cochlear nucleus. Front Neural Circuits 8:63
Jiang, Meiyan; Wang, Qi; Karasawa, Takatoshi et al. (2014) Sodium-glucose transporter-2 (SGLT2; SLC5A2) enhances cellular uptake of aminoglycosides. PLoS One 9:e108941

Showing the most recent 10 out of 77 publications