Morphology and Image Analysis Core (MIAC) The objectives of the core are to: 1. Provide consultation and training In microscopy and optical Image analysis for MDRC investigators Provide access to senior personnel highly skilled in microscopy and optical image analysis for MDRC Investigators 3. Provide access to state-of-the-art instrumentation for microscopy and optical image analysis for MDRC Investigators 4. Develop and/or implement new technologies for microscopy and optical Image analysis beneficial to MDRC Investigators. The MIAC remains focused on providing state-of-the-art quantitative morphological analysis of fixed and living cells for MDRC Investigators working on diabetes, its complications, and related endocrine and metabolic disorders. The Core provides service, consultation, collaboration and access to instrumentation for a variety of microscopic and analytic techniques. The Core focuses on light microscopic and confocal analysis of fixed and living cells using immunocyto-chemlstry, visualization of fluorescent proteins and use of fluorescent reporter probes such as Ca2+ and mitochondrial function. The Core's major instruments are three confocal microscopes and a widefield inverted fluorescence microscope, along with the Instrumentation and software to carry out quantitative and other. The capabilities of the MIAC have been substantially augmented during the current funding cycle.

Public Health Relevance

The research supported by this Core is relevant to public health because it will increase our understanding of the cellular and morphologic events that underlie the development of diabetes and its complications, and hence will facilitate the development of improved diagnostic, prevention and treatment strategies.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Center Core Grants (P30)
Project #
2P30DK020572-36
Application #
8441318
Study Section
Special Emphasis Panel (ZDK1-GRB-S (O2))
Project Start
Project End
Budget Start
2012-12-01
Budget End
2013-11-30
Support Year
36
Fiscal Year
2013
Total Cost
$154,114
Indirect Cost
$55,005
Name
University of Michigan Ann Arbor
Department
Type
DUNS #
073133571
City
Ann Arbor
State
MI
Country
United States
Zip Code
48109
Kimball, Andrew; Schaller, Matthew; Joshi, Amrita et al. (2018) Ly6CHi Blood Monocyte/Macrophage Drive Chronic Inflammation and Impair Wound Healing in Diabetes Mellitus. Arterioscler Thromb Vasc Biol 38:1102-1114
Lee, Jin-Sook; Caruso, Joseph A; Hubbs, Garrett et al. (2018) Molecular architecture of mouse and human pancreatic zymogen granules: protein components and their copy numbers. Biophys Rep 4:94-103
Yue, Yang; Blasius, T Lynne; Zhang, Stephanie et al. (2018) Altered chemomechanical coupling causes impaired motility of the kinesin-4 motors KIF27 and KIF7. J Cell Biol 217:1319-1334
Ammari, Zaid; Pak, Stella C; Ruzieh, Mohammed et al. (2018) Posttransplant Tacrolimus-Induced Diabetic Ketoacidosis: Review of the Literature. Case Rep Endocrinol 2018:4606491
Brown, Callie L; Perrin, Eliana M; Peterson, Karen E et al. (2018) Association of Picky Eating With Weight Status and Dietary Quality Among Low-Income Preschoolers. Acad Pediatr 18:334-341
Rodriquez, Erik J; Livaudais-Toman, Jennifer; Gregorich, Steven E et al. (2018) Relationships between allostatic load, unhealthy behaviors, and depressive disorder in U.S. adults, 2005-2012 NHANES. Prev Med 110:9-15
Morran, Michael P; Al-Dieri, Ali G; Nestor-Kalinoski, Andrea L et al. (2018) Insulin receptor based lymphocyte trafficking in the progression of type 1 diabetes. J Biol Methods 5:
Jiang, Youde; Liu, Li; Steinle, Jena J (2018) miRNA15a regulates insulin signal transduction in the retinal vasculature. Cell Signal 44:28-32
Montrose, Luke; Padmanabhan, Vasantha; Goodrich, Jaclyn M et al. (2018) Maternal levels of endocrine disrupting chemicals in the first trimester of pregnancy are associated with infant cord blood DNA methylation. Epigenetics 13:301-309
Afshinnia, Farsad; Rajendiran, Thekkelnaycke M; Wernisch, Stefanie et al. (2018) Lipidomics and Biomarker Discovery in Kidney Disease. Semin Nephrol 38:127-141

Showing the most recent 10 out of 1823 publications