A. DEFINITION The objective of the In Vivo Studies Core is to provide a venue for focusing the human resources, facilities, new technology and equipment necessary for In vivo study of humans and animals. The Core serves to fully integrate investigations at the molecular, cellular and organ system level that are currently performed within the other Cores of the Center. The Core is organized to bring together expertise and in vivo techniques from different disciplines to investigate the role of peptide hormones in a wide variety of gastrointestinal functions. Toward these goals, the major services provided by the In Vivo Studies Core are as follows: 1. To provide a variety of acute and chronic animal models for in vivo evaluation of the biological actions of peptide hormones. 2. To examine the physiological changes in mouse models following transgene expression or gene mutation. 3. To provide in vivo techniques and tests for the Investigation of the physiology and pathophysiology of gastrointestinal peptides in humans. 4. To facilitate innovations in methodology and to develop sophisticated new techniques for In vivo studies. 5. To educate and consult on human clinical studies as well as the application of In vivo techniques so that basic physiological and biochemical questions pertaining to peptide hormones may be answered.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Center Core Grants (P30)
Project #
2P30DK034933-26
Application #
8015108
Study Section
Special Emphasis Panel (ZDK1-GRB-8 (M1))
Project Start
Project End
Budget Start
2010-12-01
Budget End
2011-11-30
Support Year
26
Fiscal Year
2011
Total Cost
$158,658
Indirect Cost
Name
University of Michigan Ann Arbor
Department
Type
DUNS #
073133571
City
Ann Arbor
State
MI
Country
United States
Zip Code
48109
Hou, Yanan; Ernst, Stephen A; Lentz, Stephen I et al. (2016) Genetic deletion of Rab27B in pancreatic acinar cells affects granules size and has inhibitory effects on amylase secretion. Biochem Biophys Res Commun 471:610-5
Baxter, Nielson T; Koumpouras, Charles C; Rogers, Mary A M et al. (2016) DNA from fecal immunochemical test can replace stool for detection of colonic lesions using a microbiota-based model. Microbiome 4:59
Reddy, Naveen G; Nangia, Sharad; DiMagno, Matthew J (2016) The Chronic Pancreatitis International Classification of Diseases, Ninth Revision, Clinical Modification Code 577.1 Is Inaccurate Compared With Criterion-Standard Clinical Diagnostic Scoring Systems. Pancreas 45:1276-1281
Ramakrishnan, Sadeesh K; Zhang, Huabing; Takahashi, Shogo et al. (2016) HIF2α Is an Essential Molecular Brake for Postprandial Hepatic Glucagon Response Independent of Insulin Signaling. Cell Metab 23:505-16
Sun, Jingyuan; Groppi, Vincent E; Gui, Honglian et al. (2016) High-Throughput Screening for Drugs that Modulate Intermediate Filament Proteins. Methods Enzymol 568:163-85
Leslie, Jhansi L; Young, Vincent B (2016) A whole new ball game: Stem cell-derived epithelia in the study of host-microbe interactions. Anaerobe 37:25-8
Baxter, Nielson T; Ruffin 4th, Mack T; Rogers, Mary A M et al. (2016) Microbiota-based model improves the sensitivity of fecal immunochemical test for detecting colonic lesions. Genome Med 8:37
Ding, Lin; Hayes, Michael M; Photenhauer, Amanda et al. (2016) Schlafen 4-expressing myeloid-derived suppressor cells are induced during murine gastric metaplasia. J Clin Invest 126:2867-80
Desai, Mahesh S; Seekatz, Anna M; Koropatkin, Nicole M et al. (2016) A Dietary Fiber-Deprived Gut Microbiota Degrades the Colonic Mucus Barrier and Enhances Pathogen Susceptibility. Cell 167:1339-1353.e21
Hou, Yanan; Ernst, Stephen A; Heidenreich, Kaeli et al. (2016) Glucagon-like peptide-1 receptor is present in pancreatic acinar cells and regulates amylase secretion through cAMP. Am J Physiol Gastrointest Liver Physiol 310:G26-33

Showing the most recent 10 out of 658 publications