Since the founding of CURE by Dr. Morton I. Grosssman in 1973, a strong tradition of expertise has existed for exploring the physiological mechanisms involved in the regulation of GI function under normal and pathological conditions, as recently reviewed by the Animal Models Core Co-Director (1). In the past two decades, tremendous increases in knowledge derived from cell and molecular biological approaches have driven interest to evaluate in vitro findings within the context of integrative physiological models. Conversely, observations derived from the role of specific endogenous hormones or transmitters in the regulation of normal or abnormal GI functions in in vivo models have provided the impetus for focused mechanistic evaluation at the cellular level using molecular biological methods. Indeed, a common theme in many of the research programs of the Center investigators is the elucidation of the pathophysiological role and molecular mechanism of action of gastrointestinal peptide hormones, neuropeptides, paracrine regulators and classical neurotransmitters. Thus, in vivo studies are important for the implementation of many research programs of CURE: DDRCC members to: 1. Assess the biological significance of mechanisms elucidated in vitro; 2. Dissect the neural, hormonal and paracrine mechanisms involved in integrated physiological regulation of GI function; 3. Test biological activity of new reagents (i.e., antibodies, selective receptor agonists or antagonists or novel peptides); 4. Establish relevant models of GI diseases.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Center Core Grants (P30)
Project #
5P30DK041301-24
Application #
8425027
Study Section
Special Emphasis Panel (ZDK1-GRB-8)
Project Start
Project End
Budget Start
2012-12-01
Budget End
2013-11-30
Support Year
24
Fiscal Year
2013
Total Cost
$92,969
Indirect Cost
$19,184
Name
University of California Los Angeles
Department
Type
DUNS #
092530369
City
Los Angeles
State
CA
Country
United States
Zip Code
90095
Videlock, Elizabeth J; Shih, Wendy; Adeyemo, Mopelola et al. (2016) The effect of sex and irritable bowel syndrome on HPA axis response and peripheral glucocorticoid receptor expression. Psychoneuroendocrinology 69:67-76
Giannogonas, Panagiotis; Apostolou, Athanasia; Manousopoulou, Antigoni et al. (2016) Identification of a novel interaction between corticotropin releasing hormone (Crh) and macroautophagy. Sci Rep 6:23342
Camus, M; Jensen, D M; Kovacs, T O et al. (2016) Independent risk factors of 30-day outcomes in 1264 patients with peptic ulcer bleeding in the USA: large ulcers do worse. Aliment Pharmacol Ther 43:1080-9
Yu, Juehua; Liu, Shi-He; Sanchez, Robbi et al. (2016) Pancreatic cancer actionable genes in precision medicine and personalized surgery. Surgeon :
Wang, Jia; Sinnett-Smith, James; Stevens, Jan V et al. (2016) Biphasic Regulation of Yes-associated Protein (YAP) Cellular Localization, Phosphorylation, and Activity by G Protein-coupled Receptor Agonists in Intestinal Epithelial Cells: A NOVEL ROLE FOR PROTEIN KINASE D (PKD). J Biol Chem 291:17988-8005
Walwyn, Wendy M; Chen, Wenling; Kim, Hyeyoung et al. (2016) Sustained Suppression of Hyperalgesia during Latent Sensitization by μ-, δ-, and κ-opioid receptors and α2A Adrenergic Receptors: Role of Constitutive Activity. J Neurosci 36:204-21
Padua, David; Mahurkar-Joshi, Swapna; Law, Ivy Ka Man et al. (2016) A long noncoding RNA signature for ulcerative colitis identifies IFNG-AS1 as an enhancer of inflammation. Am J Physiol Gastrointest Liver Physiol 311:G446-57
Rouch, Joshua D; Scott, Andrew; Lei, Nan Ye et al. (2016) Development of Functional Microfold (M) Cells from Intestinal Stem Cells in Primary Human Enteroids. PLoS One 11:e0148216
Law, Ivy Ka Man; Jensen, Dane; Bunnett, Nigel W et al. (2016) Neurotensin-induced miR-133α expression regulates neurotensin receptor 1 recycling through its downstream target aftiphilin. Sci Rep 6:22195
Condro, Michael C; Matynia, Anna; Foster, Nicholas N et al. (2016) High-resolution characterization of a PACAP-EGFP transgenic mouse model for mapping PACAP-expressing neurons. J Comp Neurol 524:3827-3848

Showing the most recent 10 out of 926 publications