Animal Phenotyping Core A thereugh understanding ef the precesses centrelling the response te nutrients and ef the mechanisms that centribute te obesity and related metabolic diseases is required if we are te effectively combat these condifions. The detailed analysis of animals with altered metabolism (e.g. due te dietary, molecular, genefic, or pharmacological manipulation) at a level that reveals basic underiying mechanisms of control requires specialized expertise and technology not normally available to individual investigators. Established in 2006, the goals efthe MNORC Animal Phenotyping Cere was are te provide state-of-the art equipment, services and censultafive advice regarding the detailed metabolic phenotyping of rodent models of metabolic diseases. The Animal Phenotyping Core makes the metabolic analysis of rodent models of disease available, expedifious, affordable, effective, and convenient for individual investigators. In addition to providing educafion, consultation and advice regarding the analysis ef rat and mouse models with altered metabolism, the Core provides phenotyping services on specialized equipment that it operates. Specifically, the cere determines body eempesitien and utilizes the CLAMS apparatus and other systems to examine metabolic rate, respiratory quotient, food consumption, and acfivity in rodent models ef metabolic disease. The Cere also examines the response te exercise and examines cardiovascular and ether parameters by telemetry in rodents. The Core performs hyperinsulinemic/euglycemic clamp studies including specialized analysis ef metabolite storage and release in rats and mice, as well as providing catheterizafion/cannulafien services and fissue harvesting in rodents. Thus, overall, the Animal Phenotyping Core will consultatively aid individual investigators in designing an appropriate experimental plan for the metabolic analysis of animal models relevant to obesity and then provide the tools and services necessary to effect this analysis. This research is relevant to public health because it will increase our understanding ef the events that underiie the development ef obesity and its complications, and hence will facilitate the develepment ef improved diagnostic, prevenfion and treatment strategies.

Public Health Relevance

Obesity has become a national problem that has defied easy treatment. The Animal Phenotyping Core of the Michigan Nutrition Obesity Research Center will provide investigators with advanced phenotyping techniques to understand the response to nutrition and/or other mechanisms that underlie obesity and alterations in metabolism in rodent models of disease. These insights will enable the design of novel dietary, exercise and medication interventions to control obesity and obesity-related diseases

Agency
National Institute of Health (NIH)
Type
Center Core Grants (P30)
Project #
5P30DK089503-05
Application #
8688230
Study Section
Special Emphasis Panel (ZDK1)
Project Start
Project End
Budget Start
Budget End
Support Year
5
Fiscal Year
2014
Total Cost
Indirect Cost
Name
University of Michigan Ann Arbor
Department
Type
DUNS #
City
Ann Arbor
State
MI
Country
United States
Zip Code
48109
Noori, S; McNamara, P; Jain, A et al. (2015) Catecholamine-resistant hypotension and myocardial performance following patent ductus arteriosus ligation. J Perinatol 35:123-7
Park, Byoung-Keon; Lumeng, Julie C; Lumeng, Carey N et al. (2015) Child body shape measurement using depth cameras and a statistical body shape model. Ergonomics 58:301-9
Van Pelt, D W; Newsom, S A; Schenk, S et al. (2015) Relatively low endogenous fatty acid mobilization and uptake helps preserve insulin sensitivity in obese women. Int J Obes (Lond) 39:149-55
Marton, Orsolya; Koltai, Erika; Takeda, Masaki et al. (2015) Mitochondrial biogenesis-associated factors underlie the magnitude of response to aerobic endurance training in rats. Pflugers Arch 467:779-88
Pei, Hongjuan; Sutton, Amy K; Burnett, Korri H et al. (2014) AVP neurons in the paraventricular nucleus of the hypothalamus regulate feeding. Mol Metab 3:209-15
Zhang, Deqiang; Tong, Xin; Arthurs, Blake et al. (2014) Liver clock protein BMAL1 promotes de novo lipogenesis through insulin-mTORC2-AKT signaling. J Biol Chem 289:25925-35
Ferguson, Kelly K; Peterson, Karen E; Lee, Joyce M et al. (2014) Prenatal and peripubertal phthalates and bisphenol A in relation to sex hormones and puberty in boys. Reprod Toxicol 47:70-6
Rothberg, Amy E; McEwen, Laura N; Kraftson, Andrew T et al. (2014) The impact of weight loss on health-related quality-of-life: implications for cost-effectiveness analyses. Qual Life Res 23:1371-6
Padmanabhan, V; Veiga-Lopez, A (2014) Reproduction Symposium: developmental programming of reproductive and metabolic health. J Anim Sci 92:3199-210
Shellman, Erin R; Chen, Yu; Lin, Xiaoxia et al. (2014) Metabolic network motifs can provide novel insights into evolution: The evolutionary origin of Eukaryotic organelles as a case study. Comput Biol Chem 53PB:242-250

Showing the most recent 10 out of 115 publications