The Engineering &Translational Imaging (E&TI) Module is the newly redesigned Image Analysis Module that also encompasses functions of our former Animal Resources Module. The re-development and melding of Module functions was recommended by our Core Advisory Committee to reflect the changing emphases in Module use, to take better advantage of the exceptional skills of our existing personnel, and to accommodate the research interests of new members added to our group. We consider the new Module highly innovative. We also believe it will spur innovative research because of its emphasis on technology development. This Module is expected to be unusually important for fostering collaboration between those who develop new imaging technologies and those who use them - including the clinical faculty in ophthalmology - to everyone's benefit. Our former Animal Resources Module provided shared space located within the school's animal care area that is outfitted with equipment dedicated to performing ophthalmic examinations and procedures on research animals. This essential function is retained, but moved into the E&TI Module for two compelling reasons: (1) the animal area is increasingly used for retinal imaging and functional analyses of animal eyes (rather than for procedures), which is precisely parallel to the human subjects imaging supported by the former Image Analysis Module (now renamed the E&TI), and (2) the former Animal Resource Module had no support staff. Our newly designed E&TI Module will have an expanded role for the Module assistant who aids with studies of human subjects to include studies of research animals. The Module will also have an engineer to maintain existing instruments, modify them to suit investigators'needs, and - importantly - to develop new instruments and new image processing and data analysis software. This Module staffing will bring significantly added value to those who do animal research. Further, the translational aspect of our Core investigators'research will be strongly supported by melding support for animal and human eye imaging under the same Module umbrella. The highly innovative and well integrated functions of the newly designed E&TI Module therefore are: (1) to provide engineering support for maintaining, modifying and developing novel imaging technologies, (2) to assist with generating and analyzing images of animal and human eyes, both for testing new devices and for studying ocular phenotypes, and (3) to facilitate studies involving imaging of human subjects in collaboration with clinician scientists through the services of a Module assistant who functions as clinical research coordinator. This Module is expected to significantly enhance productivity and provide important cost benefits by making available equipment and services that could not be supported on individual investigator's grants including specialized imaging instruments, an engineer skilled in working on optical devices, and a clinical research coordinator to facilitate human subjects research.

Agency
National Institute of Health (NIH)
Institute
National Eye Institute (NEI)
Type
Center Core Grants (P30)
Project #
5P30EY001931-38
Application #
8676799
Study Section
Special Emphasis Panel (ZEY1)
Project Start
Project End
Budget Start
2014-07-01
Budget End
2015-06-30
Support Year
38
Fiscal Year
2014
Total Cost
Indirect Cost
Name
Medical College of Wisconsin
Department
Type
DUNS #
City
Milwaukee
State
WI
Country
United States
Zip Code
53226
Razeen, Moataz M; Cooper, Robert F; Langlo, Christopher S et al. (2016) Correlating Photoreceptor Mosaic Structure to Clinical Findings in Stargardt Disease. Transl Vis Sci Technol 5:6
Baghaie, Ahmadreza; D'Souza, Roshan M; Yu, Zeyun (2016) Application of Independent Component Analysis Techniques in Speckle Noise Reduction of Retinal OCT Images. Optik (Stuttg) 127:5783-5791
Mainali, Laxman; Raguz, Marija; O'Brien, William J et al. (2016) Changes in the Properties and Organization of Human Lens Lipid Membranes Occurring with Age. Curr Eye Res :1-11
Chui, Toco Yuen Ping; Pinhas, Alexander; Gan, Alexander et al. (2016) Longitudinal imaging of microvascular remodelling in proliferative diabetic retinopathy using adaptive optics scanning light ophthalmoscopy. Ophthalmic Physiol Opt 36:290-302
Scoles, Drew; Sulai, Yusufu N; Cooper, Robert F et al. (2016) PHOTORECEPTOR INNER SEGMENT MORPHOLOGY IN BEST VITELLIFORM MACULAR DYSTROPHY. Retina :
Cooper, Robert F; Lombardo, Marco; Carroll, Joseph et al. (2016) Methods for investigating the local spatial anisotropy and the preferred orientation of cones in adaptive optics retinal images. Vis Neurosci 33:E005
Zhaoping, Li; Carroll, Joseph (2016) An analytical model of the influence of cone sensitivity and numerosity on the Rayleigh match. J Opt Soc Am A Opt Image Sci Vis 33:A228-37
Brilliant, Murray H; Vaziri, Kamyar; Connor Jr, Thomas B et al. (2016) Mining Retrospective Data for Virtual Prospective Drug Repurposing: L-DOPA and Age-related Macular Degeneration. Am J Med 129:292-8
Scoles, Drew; Flatter, John A; Cooper, Robert F et al. (2016) ASSESSING PHOTORECEPTOR STRUCTURE ASSOCIATED WITH ELLIPSOID ZONE DISRUPTIONS VISUALIZED WITH OPTICAL COHERENCE TOMOGRAPHY. Retina 36:91-103
Widomska, Justyna; Zareba, Mariusz; Subczynski, Witold Karol (2016) Can Xanthophyll-Membrane Interactions Explain Their Selective Presence in the Retina and Brain? Foods 5:

Showing the most recent 10 out of 467 publications