Core CThe Developmental Neurobiology Imaging and Tissue Processing Core (Core C) provides state-of-the-artequipment and technical support for experimental projects on the assembly and modulation of synaptic,neuronal, and glial structure and function. By sharing technical expertise, equipment, facilities, andprofessional staff, the Core facilitates cost-effective, cross-project collaborations. The DevelopmentalNeurobiology Imaging and Tissue Processing Core performs cytological and histological processing ofexperimental tissues, and performs image analysis in a regular and reliable fashion for the developmentalsynaptic neurobiology, neuroimmunoendocrinology and infectious disease, and molecular biological andgenetic studies projects outlined in the MRRC. In particular, the Developmental Neurobiology Imaging andTissue Processing Core provides a facility for cell and tissue processing and quantitative image analysis atthe light, confocal, and electron microscopic levels for many projects comprising the MRRC portfolio. In thisregard, the Imaging Core contributes to an interrelationship and synergism among the component projects,resulting in greater scientific productivity and improved cost effectiveness than individual projects couldachieve separately. The currently re-configured Neurobiology Tissue Processing and Imaging Core is theresult of a merger of two previously existing cores (developmental neurobiology and tissue processing ANDcombined LSCM imaging and electrophysiology) that had two clearly delineated objectives from the originalP30. For many investigators, these two objectives are sequential and therefore have led to a sequentialuse of two non-overlapping facilities. Now, these tasks are integrated allowing an investigator toaccomplish cell or tissue processing and various imaging modalities including: time-lapse live imaging forstable, long-term high-resolution morphological studies; simultaneous real time two photon laser scanningconfocal microscopy imaging and recording of plasma membrane potential by the whole-cell patch-clamptechnique; monitoring of presynaptic release probability of individual synapses by the de-staining rate of theFM fluorescent dyes; high resolution electron microscopy including serial section analysis of reconstructedcells; and combined immunohistochemical staining and electron microscopy for subcellular localization ofepitopes a single unit. These techniques require constantly evolving skills on the side of the investigatorsand a significant investment in instrumentation.

Agency
National Institute of Health (NIH)
Institute
Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD)
Type
Center Core Grants (P30)
Project #
2P30HD038985-06A2
Application #
7563388
Study Section
Special Emphasis Panel (ZHD1-MRG-C (12))
Project Start
2008-09-01
Project End
2013-06-30
Budget Start
2008-09-01
Budget End
2009-06-30
Support Year
6
Fiscal Year
2008
Total Cost
$238,247
Indirect Cost
Name
University of Alabama Birmingham
Department
Type
DUNS #
063690705
City
Birmingham
State
AL
Country
United States
Zip Code
35294
Wadsworth, Heather M; Maximo, Jose O; Donnelly, Rebecca J et al. (2018) Action simulation and mirroring in children with autism spectrum disorders. Behav Brain Res 341:1-8
Tarquinio, Daniel C; Hou, Wei; Neul, Jeffrey L et al. (2018) The course of awake breathing disturbances across the lifespan in Rett syndrome. Brain Dev 40:515-529
Killian, John T; Lane, Jane B; Lee, Hye-Seung et al. (2017) Scoliosis in Rett Syndrome: Progression, Comorbidities, and Predictors. Pediatr Neurol 70:20-25
Tarquinio, Daniel C; Hou, Wei; Berg, Anne et al. (2017) Longitudinal course of epilepsy in Rett syndrome and related disorders. Brain 140:306-318
Butler, Anderson A; Webb, William M; Lubin, Farah D (2016) Regulatory RNAs and control of epigenetic mechanisms: expectations for cognition and cognitive dysfunction. Epigenomics 8:135-51
Heaven, Michael R; Flint, Daniel; Randall, Shan M et al. (2016) Composition of Rosenthal Fibers, the Protein Aggregate Hallmark of Alexander Disease. J Proteome Res 15:2265-82
Robert, Stephanie M; Buckingham, Susan C; Campbell, Susan L et al. (2015) SLC7A11 expression is associated with seizures and predicts poor survival in patients with malignant glioma. Sci Transl Med 7:289ra86
Parrish, R Ryley; Buckingham, Susan C; Mascia, Katherine L et al. (2015) Methionine increases BDNF DNA methylation and improves memory in epilepsy. Ann Clin Transl Neurol 2:401-16
Tarquinio, Daniel C; Hou, Wei; Neul, Jeffrey L et al. (2015) The Changing Face of Survival in Rett Syndrome and MECP2-Related Disorders. Pediatr Neurol 53:402-11
Tarquinio, Daniel C; Hou, Wei; Neul, Jeffrey L et al. (2015) Age of diagnosis in Rett syndrome: patterns of recognition among diagnosticians and risk factors for late diagnosis. Pediatr Neurol 52:585-91.e2

Showing the most recent 10 out of 129 publications