This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. Primary support for the subproject and the subproject's principal investigator may have been provided by other sources, including other NIH sources. The Total Cost listed for the subproject likely represents the estimated amount of Center infrastructure utilized by the subproject, not direct funding provided by the NCRR grant to the subproject or subproject staff. Trypanosoma brucei is a unicellular parasitic protozoan that causes African sleeping sickness in humans and Ngana in cattle and other livestock. The parasite has a complex lifecycle with transitions in cell shape during both the human and the tse tse fly infection. Responsible for the maintenance and restructuring of these cell shapes is a complex microtubule cytoskeleton, consisting of a sub-pellicular microtubule array, the flagellar axoneme, basal bodies and the mitotic spindle. The sub-pellicular microtubule array is a complete corset of equally interspaced filaments, cross-linked to each other and to the plasma membrane. The microtubules within this array are hyper-stable and resist detergent extraction. We wonder how the stable sub-pellicular microtubule array allows for the constant rearrangement of cell shape that is caused by flagellar beating, cell growth and division. How is microtubule cross-bridging achieved and maintained? How is the new flagellar pocket inserted into the corset without causing gaps in between the filaments? Constant flagellar beating is essential for the viability of these cells, and the correct cell shape (i.e. life cycle stage) is important for transfer or the parasite between humans and the tse tse fly. Therefore, understanding the microtubule cytoskeleton and its associated proteins might reveal important novel drug targets. We will use electron tomography to yield maps of this cell's internal organization and its changes during the cell cycle, and analyze the detailed protein arrangement associated with the microtubule cytoskeleton using cryo-electron tomography.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR000592-41
Application #
8362558
Study Section
Special Emphasis Panel (ZRG1-CB-J (40))
Project Start
2011-05-01
Project End
2012-04-30
Budget Start
2011-05-01
Budget End
2012-04-30
Support Year
41
Fiscal Year
2011
Total Cost
$21,276
Indirect Cost
Name
University of Colorado at Boulder
Department
Biochemistry
Type
Schools of Arts and Sciences
DUNS #
007431505
City
Boulder
State
CO
Country
United States
Zip Code
80309
Giddings Jr, Thomas H; Morphew, Mary K; McIntosh, J Richard (2017) Preparing Fission Yeast for Electron Microscopy. Cold Spring Harb Protoc 2017:pdb.prot091314
Zhao, Xiaowei; Schwartz, Cindi L; Pierson, Jason et al. (2017) Three-Dimensional Structure of the Ultraoligotrophic Marine Bacterium ""Candidatus Pelagibacter ubique"". Appl Environ Microbiol 83:
Brown, Joanna R; Schwartz, Cindi L; Heumann, John M et al. (2016) A detailed look at the cytoskeletal architecture of the Giardia lamblia ventral disc. J Struct Biol 194:38-48
Saheki, Yasunori; Bian, Xin; Schauder, Curtis M et al. (2016) Control of plasma membrane lipid homeostasis by the extended synaptotagmins. Nat Cell Biol 18:504-15
Höög, Johanna L; Lacomble, Sylvain; Bouchet-Marquis, Cedric et al. (2016) 3D Architecture of the Trypanosoma brucei Flagella Connector, a Mobile Transmembrane Junction. PLoS Negl Trop Dis 10:e0004312
Park, J Genevieve; Palmer, Amy E (2015) Properties and use of genetically encoded FRET sensors for cytosolic and organellar Ca2+ measurements. Cold Spring Harb Protoc 2015:pdb.top066043
McCoy, Kelsey M; Tubman, Emily S; Claas, Allison et al. (2015) Physical limits on kinesin-5-mediated chromosome congression in the smallest mitotic spindles. Mol Biol Cell 26:3999-4014
Höög, Johanna L; Lötvall, Jan (2015) Diversity of extracellular vesicles in human ejaculates revealed by cryo-electron microscopy. J Extracell Vesicles 4:28680
Marc, Robert E; Anderson, James R; Jones, Bryan W et al. (2014) The AII amacrine cell connectome: a dense network hub. Front Neural Circuits 8:104
Weber, Britta; Tranfield, Erin M; Höög, Johanna L et al. (2014) Automated stitching of microtubule centerlines across serial electron tomograms. PLoS One 9:e113222

Showing the most recent 10 out of 84 publications