This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. Primary support for the subproject and the subproject's principal investigator may have been provided by other sources, including other NIH sources. The Total Cost listed for the subproject likely represents the estimated amount of Center infrastructure utilized by the subproject, not direct funding provided by the NCRR grant to the subproject or subproject staff. CD22, a regulator of B-cell signaling, is a siglec that recognizes the sequence NeuAcalpha2-6Gal on glycoprotein glycans as ligands. CD22 interactions with glycoproteins on the same cell (in cis) and apposing cells (in trans) modulate its activity in B-cell receptor signaling. Although CD22 predominantly recognizes neighboring CD22 molecules as cis ligands on B-cells, little is known about the trans ligands on apposing cells. We conducted a proteomics scale study to identify candidate trans ligands of CD22 on B-cells by UV photocross-linking CD22-Fc chimera bound to B-cell glycoproteins engineered to carry sialic acids with a 9-aryl azide moiety. Using mass spectrometry-based quantitative proteomics to analyze the cross-linked products, 27 glycoproteins were identified as candidate trans ligands. Next, CD22 expressed on the surface of one cell was photocross-linked to glycoproteins on apposing B-cells followed by immunochemical analysis of the products with antibodies to the candidate ligands. Of the many candidate ligands, only the B-cell receptor IgM was found to be a major in situ trans ligand of CD22 that is selectively redistributed to the site of cell contact upon interaction with CD22 on the apposing cell.

National Institute of Health (NIH)
National Center for Research Resources (NCRR)
Biotechnology Resource Grants (P41)
Project #
Application #
Study Section
Special Emphasis Panel (ZRG1-CB-L (40))
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Washington
Schools of Medicine
United States
Zip Code
Shan, Chun-Min; Wang, Jiyong; Xu, Ke et al. (2016) A histone H3K9M mutation traps histone methyltransferase Clr4 to prevent heterochromatin spreading. Elife 5:
Kim, Tae Kwon; Tirloni, Lucas; Pinto, Antônio F M et al. (2016) Ixodes scapularis Tick Saliva Proteins Sequentially Secreted Every 24 h during Blood Feeding. PLoS Negl Trop Dis 10:e0004323
McBride, Ryan; Paulson, James C; de Vries, Robert P (2016) A Miniaturized Glycan Microarray Assay for Assessing Avidity and Specificity of Influenza A Virus Hemagglutinins. J Vis Exp :
McClatchy, D B; Savas, J N; Martínez-Bartolomé, S et al. (2016) Global quantitative analysis of phosphorylation underlying phencyclidine signaling and sensorimotor gating in the prefrontal cortex. Mol Psychiatry 21:205-15
Wang, Jiyong; Cohen, Allison L; Letian, Anudari et al. (2016) The proper connection between shelterin components is required for telomeric heterochromatin assembly. Genes Dev 30:827-39
Di Maggio, Lucía Sánchez; Tirloni, Lucas; Pinto, Antonio F M et al. (2016) Across intra-mammalian stages of the liver f luke Fasciola hepatica: a proteomic study. Sci Rep 6:32796
Homer, Christina M; Summers, Diana K; Goranov, Alexi I et al. (2016) Intracellular Action of a Secreted Peptide Required for Fungal Virulence. Cell Host Microbe 19:849-64
Silva, Erica; Betleja, Ewelina; John, Emily et al. (2016) Ccdc11 is a novel centriolar satellite protein essential for ciliogenesis and establishment of left-right asymmetry. Mol Biol Cell 27:48-63
Tang, Wen; Tu, Shikui; Lee, Heng-Chi et al. (2016) The RNase PARN-1 Trims piRNA 3' Ends to Promote Transcriptome Surveillance in C. elegans. Cell 164:974-84
Carvalho, Paulo C; Lima, Diogo B; Leprevost, Felipe V et al. (2016) Integrated analysis of shotgun proteomic data with PatternLab for proteomics 4.0. Nat Protoc 11:102-17

Showing the most recent 10 out of 561 publications