This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. Primary support for the subproject and the subproject's principal investigator may have been provided by other sources, including other NIH sources. The Total Cost listed for the subproject likely represents the estimated amount of Center infrastructure utilized by the subproject, not direct funding provided by the NCRR grant to the subproject or subproject staff. The goal of this collaborative project is to image O2 and redox metabolism in live cardiac myocytes or myocyte clusters from normal hearts and hearts with cardiomyopathy. Normal cardiac myocytes (from rats) are typically about 20 x 25 x 150 microns. With hypertrophic cardiomyopathy (CM) these cells can increase in size by over 50%. We will make use of recently developed ESRM technology at ACERT and recently developed intra-cellular trityl radical probes and trityl-nitroxide biradicals to provide subcellular and extra cellular imaging of oxygen and redox metabolism that will complement our present """"""""tissue level"""""""" imaging on isolated and in vivo hearts, conducted with low field/lower resolution in-vivo ESR imaging. ESR microscopy will be employed with our recently developed novel trityl esters and trityl-nitroxide biradicals that enable measurements of O2 concentrations and redox metabolism in cells and tissues. This is an extension of our grants noted above. Specifically, we will: 1. Incubate and load cardiac myocytes with our recently developed trityl ester probes that we have shown to serve as intracellular spin labels and oximetry probes and then employ ESRM to measure their location and the localized intracellular O2 concentration. Similar measurements will be performed with the extracellular trityl CT-03. 2. Perform similar measurements with our new trityl nitroxide biradicals of intracellular redox metabolism. 3. Subject the cells to different Ca(II) levels and stimulation with beating at rates of 0.5 Hz to 5 Hz and measure the effects on O2 and redox metabolism within the normal and CM myocytes. Several important questions will be addressed including: Is intracellular O2 concentration and redox metabolism different than extracellular values? Are there spatial differences within the cell? Do these values change with myocyte contractile activity? Do these values change with Ca(II) concentration?

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
2P41RR016292-11
Application #
8364092
Study Section
Special Emphasis Panel (ZRG1-BCMB-K (40))
Project Start
2011-09-01
Project End
2012-08-31
Budget Start
2011-09-01
Budget End
2012-08-31
Support Year
11
Fiscal Year
2011
Total Cost
$803
Indirect Cost
Name
Cornell University
Department
Chemistry
Type
Schools of Arts and Sciences
DUNS #
872612445
City
Ithaca
State
NY
Country
United States
Zip Code
14850
Jain, Rinku; Vanamee, Eva S; Dzikovski, Boris G et al. (2014) An iron-sulfur cluster in the polymerase domain of yeast DNA polymerase ?. J Mol Biol 426:301-8
Pratt, Ashley J; Shin, David S; Merz, Gregory E et al. (2014) Aggregation propensities of superoxide dismutase G93 hotspot mutants mirror ALS clinical phenotypes. Proc Natl Acad Sci U S A 111:E4568-76
Georgieva, Elka R; Borbat, Peter P; Ginter, Christopher et al. (2013) Conformational ensemble of the sodium-coupled aspartate transporter. Nat Struct Mol Biol 20:215-21
Airola, Michael V; Sukomon, Nattakan; Samanta, Dipanjan et al. (2013) HAMP domain conformers that propagate opposite signals in bacterial chemoreceptors. PLoS Biol 11:e1001479
Airola, Michael V; Huh, Doowon; Sukomon, Nattakan et al. (2013) Architecture of the soluble receptor Aer2 indicates an in-line mechanism for PAS and HAMP domain signaling. J Mol Biol 425:886-901
Sun, Yan; Zhang, Ziwei; Grigoryants, Vladimir M et al. (2012) The internal dynamics of mini c TAR DNA probed by electron paramagnetic resonance of nitroxide spin-labels at the lower stem, the loop, and the bulge. Biochemistry 51:8530-41
Yu, Renyuan Pony; Darmon, Jonathan M; Hoyt, Jordan M et al. (2012) High-Activity Iron Catalysts for the Hydrogenation of Hindered, Unfunctionalized Alkenes. ACS Catal 2:1760-1764
Dzikovski, Boris; Tipikin, Dmitriy; Freed, Jack (2012) Conformational distributions and hydrogen bonding in gel and frozen lipid bilayers: a high frequency spin-label ESR study. J Phys Chem B 116:6694-706
Gaffney, Betty J; Bradshaw, Miles D; Frausto, Stephen D et al. (2012) Locating a lipid at the portal to the lipoxygenase active site. Biophys J 103:2134-44
Maeda, Kiminori; Lodge, Matthew T J; Harmer, Jeffrey et al. (2012) Electron tunneling in lithium-ammonia solutions probed by frequency-dependent electron spin relaxation studies. J Am Chem Soc 134:9209-18

Showing the most recent 10 out of 72 publications